

Микросхема транспондера с объемом ЭСППЗУ 80 бит

(аналог RI-TRP-W9QL фирмы Texas Instruments)

Микросхема IZ2805-5 (аналог RI-TRP-W9QL фирмы Texas Instruments) — микросхема транспондера с объемом ЭСППЗУ 80 бит для использования в радиочастотных метках низкочастотного диапазона с функцией чтения / записи. Предназначена для идентификация животных; системы защиты от подделок и т.д.

Основные характеристики:

- бесконтактная передача данных;
- питание своей схемы путем выпрямления переменного напряжения от внешней антенны, помещенной в электромагнитное поле, которое представляет собой электромагнитные колебания с частотой 134,2 кГц;
- ограничение внутреннего постоянного напряжения для предотвращения сбоя в сильном электромагнитном поле;
 - 80 битная программируемая память;
 - хранение информации в памяти при отключенном напряжении питания;
- передача данных методом частотной манипуляции (FSK) в режиме чтения с максимальной скоростью обмена 8,7 кбит/с;
 - рабочая частота 100 150 кГц;
 - количество циклов стирания/записи ячеек памяти 100 000;
 - температурный диапазон от минус 45 до плюс 85 °C;
 - ток защелкивания не менее 30 мА при температуре 25 °C, U_{CC}=6,0 В.

Таблица 1 – Назначение контактных площадок микросхемы

Номер	Обозначение	Назначение
контактной		
площадки		
кристалла		
01	GND	Общий вывод
02	COIL1	Вход/выход подключения антенны / вывод питания от ис-
02	COILT	точника напряжения
03	GND	Общий вывод
04	V1	Тестовый вывод
05	V2	Тестовый вывод
06	V3	Тестовый вывод
07	NC	не используется
08	COIL2	Вход/выход подключения антенны

Примечание – Контактные площадки 03 – 07 служит для организации режима тестирования в процессе изготовления микросхем и в аппаратуре потребителя не используются

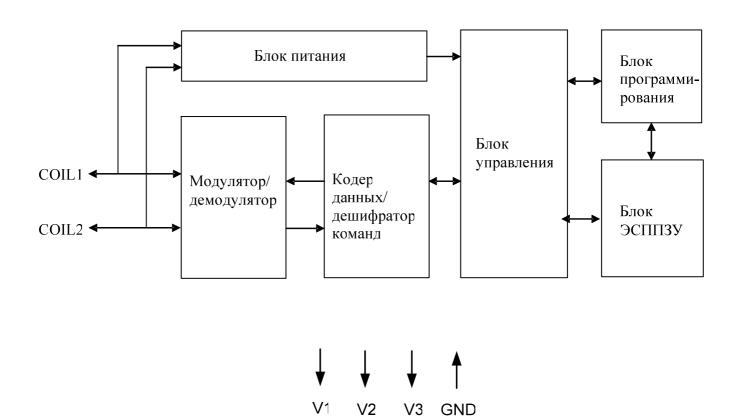


Рисунок 1 – Структурная схема

Таблица 2 - Предельные электрические режимы

Обозначение	Наименование параметров режима,	Норма		Единица
параметра	единица измерения	не менее	не более	измерения
U _{CC} *	Напряжение питания	- 0,3	-	В
I _I	Входной ток	_	30	мА
Ta	Температура среды при подаче на-	- 60	125	°C
	пряжения питания			

^{*} Внутреннее напряжение питания, получаемое путем выпрямления переменного напряжения от внешней катушки индуктивности. При $I_i \le 10$ мА максимальное значение напряжения не превышает 6,0 В (ограничено конструктивно)

Таблица 3 - Предельно допустимые электрические режимы эксплуатации

Обозначение	Наименование параметров режима,	Норма		Единица
параметра	единица измерения	не менее	не более	измерения
U _{CC} *	Напряжение питания	3,5	6,0	В
l _l	Входной ток	_	10	мА
T _a	Рабочий температурный диапазон среды	- 45	85	°C

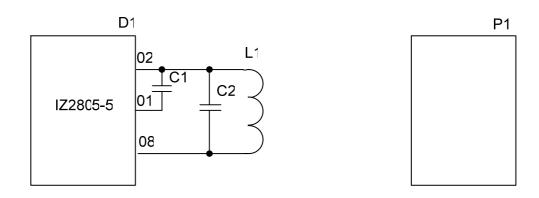

^{*} Внутреннее напряжение питания, получаемое путем выпрямления переменного напряжения от внешней катушки индуктивности. При I₁ ≤ 10 мА максимальное значение напряжения не превышает 6,0 В (ограничено конструктивно)

Таблица 4 - Электрические параметры микросхемы

	Буквенное		Норма		Темпера-	
Наименование параметра, единица измерения	обозначе- ние пара- метра	Режим измерения	не менее	не более	тура среды, °С	Единица измерения
Ток потребления	I _{CC}	U _{CC} = 3,5 B	-	<u>15</u> 20	<u>25±10</u> -45; 85	мкА
Ток потребления в режиме заряда	I _{cco}	U _{CC} = 3,5 B	-	<u>2,0</u> 3,0		мкА
Ток потребления в режиме чтения	I _{CC1}	U _{CC} = 3,5 B	1	<u>15</u> 20		мкА

Таблица 4 - Справочные параметры микросхемы

	Буквенное		Норма		Темпера-	
Наименование параметра, единица измерения	обозначе- ние пара- метра	Режим измерения	не менее	не более	тура среды, °С	Единица измерения
Частота передачи бита «0»	F∟	U _{CC} = 6,0 B	131,5 130	<u>139</u> 140	<u>25±10</u> -45; 85	кГц
Частота передачи бита «1»	F _H	U _{CC} = 6,0 B	<u>120</u> 119	<u>128</u> 129		кГц
Дальность считывания	r	f _{COIL} =134,2 кГц	<u>10</u> 9,0			СМ

C1 – зарядный конденсатор емкостью 130 нФ \pm 5 %;

C2 – резонансный конденсатор емкостью 510 пФ \pm 5 %;

D1 – микросхема;

L1 – катушка индуктивности 2,5 мГн;

Р1 – считыватель RI-STU-MB2A

Рисунок 2 – Рекомендуемая схема включения

Описание работы схемы

В микросхеме для кодирования записываемых и считываемых данных используется метод частотной манипуляции (FSK). Микросхема работает в следующих режимах: запись и программирование данных в транспондер, чтение данных с транспондера.

Режим чтения данных

Для реализации данного режима ридер (считывающее устройство) передает через свою катушку возбуждения сигнал частотой 134,2 кГц и длительностью 15 – 50 мс. В фазе заряда производится заряд накопительного конденсатора транспондера. Длительность заряда зависит от расстояния между катушкой ридера и антенной транспондера.

Через 50 мс после начала заряда микросхема начинает передавать ридеру содержащиеся в ней данные. Эти данные представляют собой последовательность «пачек» импульсов (без разрывов между «пачками»). Одна «пачка» - 16 периодов частоты 134,2 кГц (бит «0»), либо 123,2 кГц (бит «1»). Во время передачи микросхемой данных ридер находится в режиме приема этих данных. На рисунке 3 показан используемый радиочастотный принцип, независимо от количества низких и высоких битов.

Формат данных состоит из 128 бит (рисунок 4).

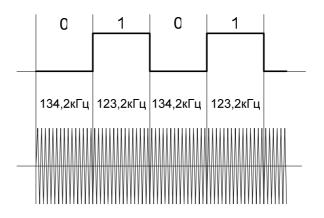


Рисунок 3 – Формат данных в режиме чтения

Рисунок 4 - Формат чтения данных транспондера

Режим записи и программирования

После фазы заряда микросхема вступает в режим записи при условии, что ридер начинает модулировать электромагнитное поле своей антенны переключением передатчика в режим включения и выключения (ТХСТ). Индекс модуляции амплитуды составляет 100 %.

Длительность «пачки» импульсов, передаваемой ридером при записи определяет, какой бит передается – бит «0» или бит «1» (рисунок 5). Частота импульсов в «пачке» 134,2 кГц.

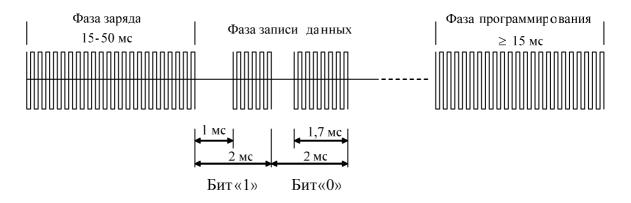


Рисунок 5 – Режим записи и программирования

Запись означает, что микросхема перемещает принимаемые биты в сдвиговый регистр. После фазы записи включается передатчик ридера на определенное время (время программирования) для того, чтобы подать питание для процесса программирования данных из сдвигового регистра в EEPROM. Все 80 бит одновременно программируются в EEPROM. Как только данные запрограммируются микросхема автоматически передает записанные данные в ридер для проверки. Этот процесс имеет место, когда передатчик выключен.

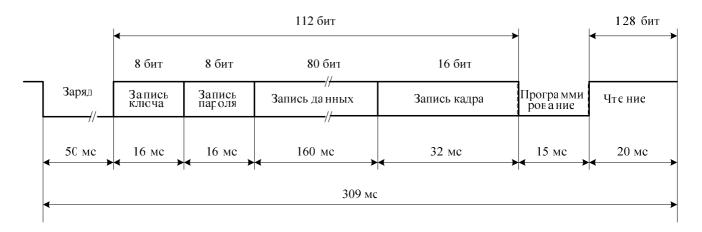
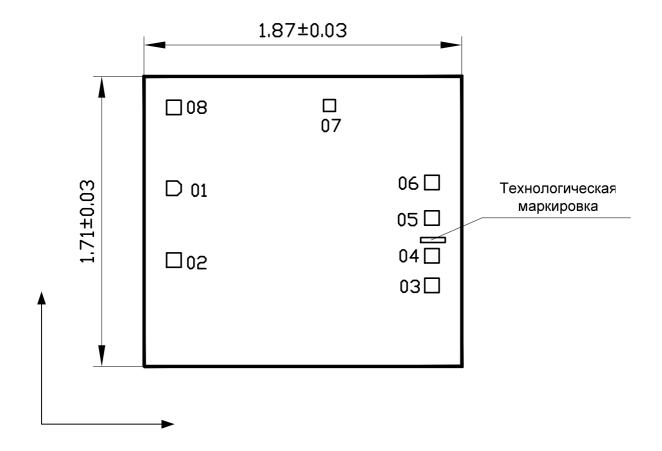



Рисунок 6 – Формат записи данных транспондера

Координаты технологической маркировки 2805.А (мм): левый нижний угол x = 1,628, y = 0,7305.

Толщина кристалла 0,18±0,02 мм.

Номер контактной	Координаты (левы	Размер контактных	
площадки	X	У	площадок, мм
01	0,1330	1,0880	0,085 x 0,085
02	0,1330	0,5844	0,085 x 0,085
03	1,6520	0,4354	0,085 x 0,085
04	1,6520	0,6100	0,085 x 0,085
05	1,6520	0,8326	0,085 x 0,085
06	1,6520	1,0420	0,085 x 0,085
07	1,0560	1,5030	0,070 x 0,070
08	0,1330	1,4844	0,085 x 0,085

Рисунок 7 — Внешний вид кристалла и координаты контактных площадок

Толщина и состав металла на планарной стороне	Ti+ TiN + Al-Si + TiN	$1,0 \pm 0,1$ мкм
Толщина и состав металла на непланарной стороне	-	

