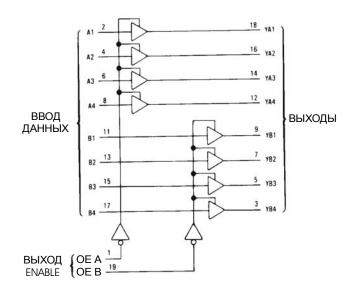
Два четырехканальных формирователя с тремя состояниями на выходе

Микросхемы IN74HCT244A по назначению выводов совместимы с микросхемами серий LS/ALS244. Входные уровни напряжений совместимы со стандартными К-МОП уровнями.

Микросхема IN74HCT244A может быть использована с драйвером памяти, драйвером часов, и другими bus-oriented системами. Прибор имеет не инвертированые выводы и два активно-низких выхода.

- ТТЛ/N-МОП-совместимые уровни
- Выходные уровни напряжений совместимы с входными уровнями К-МОП, N-МОП и ТТЛ микросхем
- Диапазон напряжения питания: 4.5 ÷ 5.5 В
- Низкий ток потребления: 1.0 мкА


IN74HCT244A

IN74HCT244AN Пластмассовый IN74HCT244ADW SOIC IN74HCT244AZ Кристалл $T_A = -55^{\circ} \div 125^{\circ}$ С для всех типов

корпусов

СТРУКТУРНАЯ СХЕМА

ВЫВОД $20=V_{CC}$ ВЫВОД 10=GND

НАЗНАЧЕНИЕ ВЫВОДОВ

ENABLE A	1●	20	v_{CC}
A1 [2	19	ENABLE B
YB4 [3	18	YA1
A2 [4	17	B4
ΥВ3 [5	16	YA2
A3 [6	15	В3
YB2 [7	14	YA3
A4 [8	13	B2
YB1 [9	12	YA4
GND [10	11	B1

ТАБЛИЦА ИСТИННОСТИ

Входы	Выходы	
Enable A, A,B Enable B		YA,YB
L	L	L
L	Н	Н
Н	X	Z

X=любой уровень напряжения H или L; Z = третье состояние

ПРЕДЕЛЬНЫЕ РЕЖИМЫ*

Обознач. параметра	Наименование параметра	Норма, не более	Един. измерен.
V_{CC}	Напряжение питания (относительно GND)	-0.5 ÷ +7.0	В
V_{IN}	Входное напряжение (относительно GND)	$-1.5 \div V_{CC} + 1.5$	В
V _{OUT}	Выходное напряжение (относительно GND)	$-0.5 \div V_{CC} + 0.5$	В
I _{IN}	Входной ток по выводу	±20	мА
I_{OUT}	Выходной ток по выводу	±35	мА
I_{CC}	Ток потребления	±75	мА
P _D	Мощность рассеивания при свободном обмене воздуха, Пластмассовый ${\rm DIP}^{**}$ ${\rm SOIC}^{**}$	750 500	мВт
Tstg	Температура хранения	-65 ÷ +150	°C
$T_{\rm L}$	Допустимая температура вывода на расстоянии 1 мм от корпуса в течении 10 с	260	°C

^{*}Превышение предельных режимов может привести к катострофическому отказу микросхемы. Рабочие режимы должны соответствовать предельно допустимым режимам, преведенным ниже.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ РЕЖИМЫ

Обознач.	Наименование параметра	Норма		Един.
параметра		Не ме- нее	Не более	измерен.
V_{CC}	Напряжяние питания (относительно GND)	4.5	5.5	В
V_{IN}, V_{OUT}	Входное напряжение, выходное напряжение (относительно GND)		V _{CC}	В
T_{A}	Температура хранения для всех видов корпусов		+125	°C
t_r , t_f	Время фронта наростания и время фронта спада сигнала (Рисунок 1)		500	нс

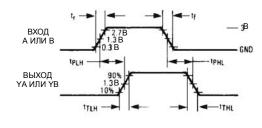
Микросхема содержит схемное решение по ее защите от статического электричества и электронных полей. В связи с этим она должна использоваться в тех схемах применения, в которых нет больших входных воздействий по напряжению. Для правильного использования напряжения V_{IN} и V_{OUT} должны быть в диапазоне $\text{GND}{\leq}(V_{\text{IN}}$ или $V_{\text{OUT}}){\leq}V_{\text{CC}}$.

Неиспользуемые входы должны всегда привязываться к соответствующему логическому уровню напряжения (например GND или V_{CC}). Неиспользуемые выходы должны быть оставлены незадействованными

^{**}При эксплуатации в диапазоне температур $65^{\circ} \div 125^{\circ}$ С значение мощности рассеивания снижается для пластмассового DIP корпуса на 10 мВт/ $^{\circ}$ С, для SOIC - на 7 мВт/ $^{\circ}$ С

СТАТИЧЕСКИЕ ПАРАМЕТРЫ (Напряжение относительно GND)

Обознач.	Наименование	Режим измерения	и измерения V_{CC}		сс Норма		
параметра	параметра		В	25 °C ÷ -55°C	≤85 °C	≤125 °C	измер.
$V_{ m IH}$	Минимальное входное напряжение высокого уровня	$V_{OUT} = V_{CC}$ -0.1 B $\mid I_{OUT} \mid \le 20 \text{ MKA}$	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	В
V_{IL}	Макимальное входное напряжение низкого уровня	V_{OUT} =0.1 B $ I_{OUT} \le 20 \text{ MKA}$	4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	В
V_{OH}	Минимальное вы- ходное напряжение высокого уровня	$egin{array}{c} V_{IN} = V_{IH} \\ ig I_{OUT} ig \leq 20 \text{ MKA} \\ V_{IN} = V_{IH} \\ \end{array}$	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	В
		$ I_{OUT} \le 6.0 \text{ MKA}$	4.5	3.98	3.84	3.7	
V _{OL}	Максимальное вы- ходное напряжение низкого уровня	$V_{IN} = V_{IL}$ $\mid I_{OUT} \mid \leq 20$ мкА	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	В
		$V_{IN} = V_{IL}$ $ I_{OUT} \le 6.0 \text{ MA}$	4.5	0.26	0.33	0.4	
${ m I}_{ m IH}$	Максимальный входной ток низко- го уровня	V _{IN} =V _{CC}	5.5	0.1	1.0	1.0	мкА
${ m I}_{ m IL}$	Минимальный входной ток высо- кого уровня	V _{IN} =GND	5.5	-0.1	-1.0	-1.0	мкА
I_{OZH}	Максимальный выходной ток высокого уровня в состоянии "Выключено"	$V_{IN}(01) = V_{IH}$ $V_{IN}(19) = V_{IH}$ $V_{IN} = V_{CC}$ (на остальных выводах) $V_{OUT} = V_{CC}$	5.5	0.5	5.0	10.0	мкА
I_{OZL}	Минимальный вы- ходной ток низкого уровня в состоянии "Выключено"	$V_{IN}(01) = V_{IH}$ $V_{IN}(19) = V_{IH}$ $V_{IN} = V_{CC}$ (на остальных выводах) $V_{OUT} = GND$	5.5	-0.5	-5.0	-10.0	мкА
I_{CC}	Максимальный ток потребления	V_{IL} =GND V_{IN} = V_{CC} I_{OUT} =0 mkA	5.5	4.0	40	160	мкА
ΔI_{CC}	Дополнительный ток потребления	V_{IN} =2.4 В (на одном выводе) V_{IN} = V_{CC} или GND (на дру-		≥-55°C		÷ 125°C	мА
		гих выводах) I _{OUT} =0 мкА	5.5	2.9	2	2.4	


ПРИМЕЧАНИЕ: Полный ток потребления = $I_{CC} + \Sigma \Delta I_{CC}$.

ДИНАМИЧЕСКИЕ	ПАРАМЕТРЫ	$(V_{CC} = 5.0 \text{ B} \pm 10\%)$	$C_I = 50 \pi \Phi_{,t_r} = t_f = 6.0 \text{ нc}$)

Обознач.	Наименование параметра	Режим измерения	V_{CC}		Норма		Един.
параметра			В	25 °C ÷ -55°C	≤85 °C	≤125 °C	измер.
t _{PLH} , t _{PHL}	Максимальное время распространения распространения включении сигнала при включении (выключении). (Рисунок 1 и 2)	$V_{CC}=5 \text{ B}\pm10\%$ $V_{IL}=0 \text{ B}$ $V_{IH}=3 \text{ B}$ $t_{LH}=t_{HL}=6 \text{ Hc}$ $C_{L}=50 \text{I} $	5.0	20	25	30	нс
t _{PLZ} , t _{PHZ}	Максимальное время задержки распространения сигнала при переходе из состояния низкого (высокого) уровня в состояние "выключено". (Рисунок 1 и 2)	$V_{CC} = 5 \text{ B} \pm 10\%$ $V_{IL} = 0 \text{ B}$ $V_{IH} = 3 \text{ B}$ $t_{LH} = t_{HL} = 6 \text{ HC}$ $C_L = 50 \text{ m}\Phi$	5.0	26	33	39	нс
t _{PZL} , t _{PZH}	Максимальное время задержки распространения сигнала при переходе их состояния "Выключено" в состояние низкого (высокого) уровня . (Рисунок 1 и 2)	V_{CC} =5 B±10% V_{IL} =0 B V_{IH} =3 B t_{LH} = t_{HL} =6 HC C_{L} =50 $\pi\Phi$	5.0	22	28	33	нс
t _{TLH} , t _{THL}	Максимальное время перехода при включении (выключении). (Рисунок 1 и 2)	$V_{CC} = 5 \text{ B} \pm 10\%$ $V_{IL} = 0 \text{ B}$ $V_{IH} = 3 \text{ B}$ $t_{LH} = t_{HL} = 6 \text{ Hc}$ $C_{L} = 50 \text{ n} \Phi$	5.0	12	15	18	нс
C _{IN}	Максимальная входная ем- кость	V _{CC} =5 B±10%	5.0	10	10	10	пФ
C _{OUT}	Максимальная выходная емкость (Выходы в третьем состоянии)	V _{CC} =5 B±10%	5.0	15	15	15	пФ

	Динамическая мощность(На один буфер)	T _A =25±10°C,V _{CC} =5.0 B	
C_{PD}	Для определения динамической мощности	55	пФ
	потребления без нагрузки $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$		

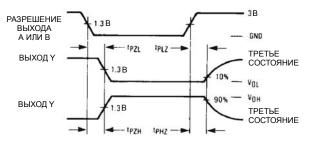
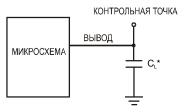
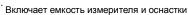
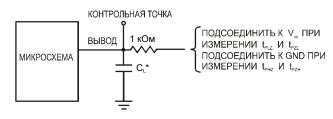
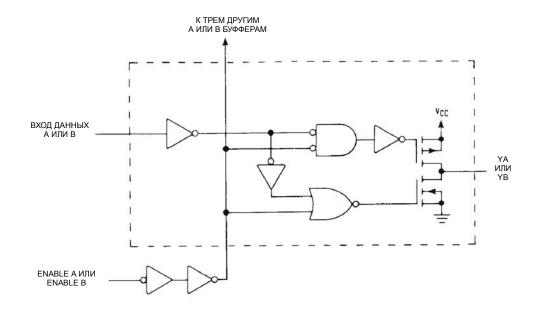
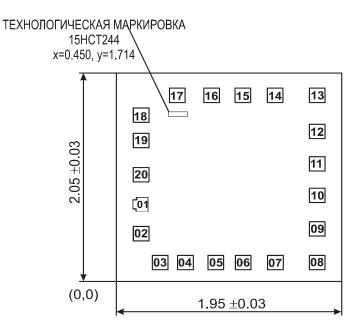





Рисунок 2. Временная диаграмма



Включает емкость измерителя и оснастки

Рисунок 3. Схема включения при испытании


Рисунок 4. Схема включения при испытании

ДОПОЛНИТЕЛЬНАЯ ЛОГИЧЕСКАЯ ДИАГРАММА (1/8 устройства)

ПЛАН КРИСТАЛЛА ІZ74НСТ244А

Размер контактных площадок 0.106 х 0.106 мм (Размер указан по слою "пассивация") Толщина кристалла 0.46 ± 0.02 мм

Номер контактной площадки	Обозначение	ние Координаты (левый нижний угол), мм	
		X	Y
01	ENABLE A	0.152	0.636
02	A1	0.152	0.396
03	YB4	0.300	0.142
04	A2	0.470	0.152
05	YB3	0.868	0.132
06	A3	1.068	0.152
07	YB2	1.330	0.132
08	A4	1.709	0.142
09	YB1	1.729	0.578
10	GND	1.729	0.812
11	B1	1.699	1.149
12	YA4	1.729	1.438
13	B2	1.719	1.804
14	YA3	1.301	1.824
15	В3	1.062	1.804
16	YA2	0.758	1.824
17	B4	0.468	1.804
18	YA1	0.142	1.662
19	ENABLE B	0.152	1.489
20	Vcc	0.152	1.005

