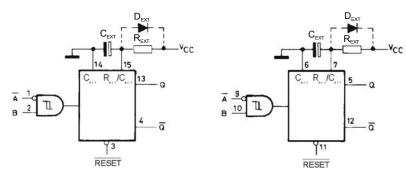
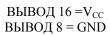
IN74HC221A

Двойной мультивибратор

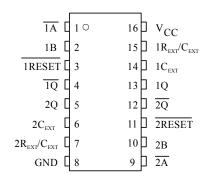

IN74HC221 по назначению выводов идентична LS/ALS221. Входные уровни микросхемы совместимы со стандартными К-МОП уровнями; с согласующими резисторами совместимы с LS/ALS ТТЛ уровнями.


Прибор имеет два входа триггера, A INPUT (инвертированный вход) и В INPUT (неинвертированный вход). Эти входы используются для переключения сигналов.

Устройство может быть выбрано по входу RESET (неинвертированный вход) ; после выбора прибор поддерживает одноуровневое состояние в течении периода времени, определенного внешним резистором $R_{\rm EXT}$ и емкостью $C_{\rm EXT}$. Вход сигнала RESET формирует одноуровневое состояние. Если следующий импульс триггера поступает в течении одноуровневого периода, то это делает одноуровневый период более длинным.

- Выходные уровни напряжений совместимы с входными уровнями К-МОП, N-МОП и ТТЛ микросхем
- Диапазон напряжения питания: 3.0 ÷ 6.0 В
- Низкий входной ток: 1.0 мкА
- Высокая помехоустойчивость К-МОП приборов

СТРУКТУРНАЯ СХЕМА


Примечание

- (1) C_{EXT} , R_{EXT} , D_{EXT} внешние компоненты.
- (2) D_{EXT} защитный диод.

Внешняя емкость заряжается от V_{CC} в резервном состоянии. Когда прекращается подача напряжения емкость C_{EXT} разряжается главным образом на паразитном диоде. Если C_{EXT} достаточно большая и происходит быстрое падение V_{CC} , то возможно повреждение протекающим током и эффектом защелкивания. Если емкость фильтра входного напряжения достаточно велика и V_{CC} спадает медленено, то ток автоматически ограничевается и исчезает возможность отказа. Максимальный ток паразитного диода приблизительно 20 мА

N ИНДЕКС пластмасссовый 1
ОБОЗНАЧЕНИЕ МИКРОСХЕМЫ
IN74HC221AN Пластмассовый
IN74HC221AD SOIC
IZ74HC221AZ Кристалл
$T_A = -55^{\circ} \div 125^{\circ} \text{ C}$ для всех типов
корпусов

НАЗНАЧЕНИЕ ВЫВОДОВ

ГАБЛИЦА ИСТИННОСТИ

	Входы		Вых	оды	Note
Ā	В	RESET	Q	Q	
_	Н	Н	ς'	ե	Output Enable
X	L	Н	L *	Н*	Inhibit
Н	X	Н	L *	Н*	Inhibit
L	۲	Н	7	5	Output Enable
L	Н	۲	4	5	Output Enable
X	X	L	L	Н	Inhibit

X = любой уровень напряжения Н или L

- в случае не одноуровневого периода

ПРЕДЕЛЬНЫЕ РЕЖИМЫ*

Обознач. параметра	Наименование параметра	Норма, не более	Един. измерен.
V_{CC}	Напряжение питания (относительно GND)	-0.5 ÷ +7.0	В
$V_{\rm IN}$	Входное напряжение (относительно GND)	$-1.5 \div V_{CC} + 1.5$	В
V_{OUT}	Выходное напряжение (относительно GND)	$-0.5 \div V_{CC} + 0.5$	В
I_{IN}	\overline{A} , \overline{B} , \overline{R} \overline{E}	±20 ±30	мА
I_{OUT}	Выходной ток по выводу	±25	мА
I_{CC}	Ток потребления	±50	мА
P _D	Мощность рассеивания при свободном обмене воздуха, пластмассовый DIP** SOIC**	750 500	мВт
Tstg	Температура хранения	-65 ÷ +150	°C
T_{L}	Допустимая температура вывода на расстоянии 1 мм от корпуса в течении 10 с	260	°C

^{*} Превышение предельных режимов может привести к катострофическому отказу микросхемы. Рабочие режимы должны соответствовать предельно допустимым режимам, преведенным ниже.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ РЕЖИМЫ

Обознач.	Наименование параме	гра	Но	Един.	
параметра			Не ме- нее	Не более	измерен.
V _{CC}	Напряжение питания (относительно G	ND)	3.0 *	6.0	В
V_{IN}, V_{OUT}	Входное напряжение, выходное напрятельно GND)	0	V_{CC}	В	
T _A	Температура хранения для всех видов	-55	+125	°C	
t_r, t_f	Input Rise and Fall Time - RESET (Рисунок 2)	$V_{CC} = 2.0 \text{ B}$ $V_{CC} = 4.5 \text{ B}$ $V_{CC} = 6.0 \text{ B}$	0 0 0	1000 500 400	нс
	A или B		-	Не огра- ничено	
$R_{\rm X}$	Внешнее сопротивление	$V_{CC} = 2.0 \text{ B}$ $V_{CC} = 5.0 \text{ B}$	10 2.0	1000 1000	кОм
C_X	Внешняя емкость	$V_{CC} = 2.0 \text{ B}$ $V_{CC} = 5.0 \text{ B}$	0	Не огра- ничено	мкФ

 * IN74HC221A сохраняет работоспособность при 2.0 B, но для оптимальной стабилизации импульсов V_{CC} должно быть более чем 3.0 B.

Микросхема содержит схемное решение по ее защите от статического электричества и электронных полей. В связи с этим она должна использоваться в тех схемах применения, в которых нет больших входных воздействий по напряжению. Для правильного использования напряжения $V_{\rm IN}$ и $V_{\rm OUT}$ должны быть в диапазоне GND \leq ($V_{\rm IN}$ или $V_{\rm OUT}$) \leq V_{CC}.

Неиспользуемые входы должны всегда привязываться к соответствующему логическому уровню напряжения (например GND или V_{CC}). Неиспользуемые выходы должны быть оставлены незадействованными.

^{**}При эксплуатации в диапазоне температур $65^{\circ} \div 125^{\circ}$ С значение мощности рассеивания снижается для пластмассового DIP корпуса на 10 мВт/ $^{\circ}$ С, для SOIC - на 7 мВт/ $^{\circ}$ С

СТАТИЧЕСКИЕ ПАРАМЕТРЫ (Напряжение относительно GND)

Обознач.	Наименование	Режим измерения V _{CC}		V _{CC} Норма			Един.
параметра	параметра		V	-55°C ÷ 25 °C	≤85 °C	≤125 °C	измер.
V_{IL}	Максимальное входное напряжение низкого уровня	$egin{aligned} \mathbf{V}_{\mathrm{OUT}} &\leq 0.1 \; \mathrm{B} \;$ или $\mathbf{V}_{\mathrm{CC}} &= 0.1 \; \mathrm{B} \;$ $\left \; \mathbf{I}_{\mathrm{OUT}} \; \right \; \leq 20 \; \mathrm{MKA} \;$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	В
$V_{ m IH}$	Минимальное входное напряжение высокого уровня	$V_{OUT} \le 0.1 \; B$ или $V_{CC} = 0.1 \; B$ $ \; I_{OUT} \; \le 20 \; \text{мкA}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	В
$V_{ m OL}$	Максимальное выходное напряжение низкого уровня	$V_{IN}=V_{IH}$ или V_{IL} $ I_{OUT} \le 20$ мкА $ V_{IN}=V_{IH} $ или V_{IL}	2.0 4.5 6.0 4.5	0.1 0.1 0.1 0.26	0.1 0.1 0.1 0.33	0.1 0.1 0.1 0.4	В
		$egin{array}{ l l l l l l l l l l l l l l l l l l l$	6.0	0.26	0.33	0.40	
V_{OH}	Минимальное выходное напряжение высокого уровня	$V_{IN} = V_{IH}$ или V_{IL} $\mid I_{OUT} \mid \le -20$ мкА	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	В
		$V_{IN} = V_{IH}$ или V_{IL} $\mid I_{OUT} \mid \le -4.0 \text{ мA}$	4.5	3.98	3.84	3.70	
		$V_{IN} = V_{IH}$ или V_{IL} $\mid I_{OUT} \mid \le -5.2$ мА	6.0	5.48	5.34	5.2	
${ m I}_{ m IL}$	Макимальный вход- ной ток низкого уровня	V_{IL} =GND V_{IH} = V_{CC}	6.0	-0.1	-1.0	-1.0	мкА
${ m I}_{ m IH}$	Минимальный входной ток высокого уровня	V _{IL} =GND V _{IH} =V _{CC}	6.0	0.1	1.0	1.0	мкА
I_{CC}	Максимальный ток потребления в устойчивом состоянии	V_{IL} =GND V_{IH} = V_{CC} I_{OUT} =0 mkA	6.0	8.0	80	160	мкА
I _{CC1}	Максимальный ток потребления в активном состоянии	V_{IL} =GND V_{IH} = V_{CC} I_{OUT} =0 mkA V_{IN} = 0.5 V_{CC}	2.0 4.5 6.0	0.08 1.0 2.0	0.11 1.3 2.6	0.13 1.6 3.2	мА

ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ

Обознач.	Наименование параметра		Режим изме-	V_{CC}	Норма			Един.
параметра			рения	V	-55°C ÷ 25 °C	≤85°C	≤125°C	измер
время задерж	Максимальное время задерж- ки распростра-	A, B - Q	V_{IL} =0 B V_{IH} = V_{CC} t_{LH} = t_{HL} =6 Hc	2.0 4.5 6.0	180 36 31	225 45 38	270 54 46	нс
	_	RESET - Q	C_L =50 пФ C_{EXT} =0 R_{EXT} =5 кОм	2.0 4.5 6.0	180 36 31	225 45 38	270 54 46	
		RESET - Q		2.0 4.5 6.0	195 39 33	245 49 42	295 59 50	
$t_{ m PLH}$	Максимальное время задерж- ки распростра-	A, B - Q	V_{IL} =0 B V_{IH} = V_{CC} t_{LH} = t_{HL} =6 Hc	2.0 4.5 6.0	220 44 37	275 55 47	330 66 56	нс
	нения при вы- ключении	RESET - Q	C_L =50 пФ C_{EXT} =0 R_{EXT} =5 кОм	2.0 4.5 6.0	245 49 42	305 61 52	370 74 63	
		RESET - Q		2.0 4.5 6.0	200 40 34	250 50 43	300 60 51	
t_{TLH}, t_{THL}	Максимальное в да при включени и 3)		$\begin{array}{c} V_{IL} \!\!=\!\! 0 \; B \\ V_{IH} \!\!=\!\! V_{CC} \\ t_{LH} \!\!=\!\! t_{HL} \!\!=\!\! 6 \; \text{Hc} \\ C_L \!\!=\!\! 50 \; \text{n} \Phi \end{array}$	2.0 4.5 6.0	75 16 14	95 20 17	110 22 20	нс
C_{IN}	Максимальная входная емкость	\overline{A} , B, \overline{RESET} C_X , R_X		-	10 20	10 20	10 20	пФ
C_{PD}	Динамическая емкость (Для одного мультивибратора) $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$			5.0		180*		пФ
t _{rec}	Минимальное вр инертный А или 2)		V_{IL} =0 B V_{IH} = V_{CC} t_{LH} = t_{HL} =6 HC C_L =50 $\pi\Phi$	2.0 4.5 6.0	100 20 17	125 25 21	150 30 26	нс
$\mathrm{t_w}$	Минимальная длительность сигнала В	A, RESET	V_{IL} =0 B V_{IH} = V_{CC} t_{LH} = t_{HL} =6 HC	2.0 4.5 6.0	25 9 7	95 19 16	110 22 19	нс
		C_L =50 пФ C_{EXT} =0 R_{EXT} =5 кОм	2.0 4.5 6.0	30 11 9	115 23 20	135 27 23		
t_{WQ}	Минимальная длительность выходного импульса выходы Q или Q .Рисунок 4		C _X =0 пФ R _X =5 кОм	5.0		105*		нс
			$C_{\text{EXT}} = 1 \text{ H}\Phi$ $R_{\text{EXT}} = 10 \text{ кОм}$	2.0 4.5 6.0		0.80* 0.75* 0.70*		мкс
			C_{EXT} =1 мкФ R_{EXT} =10 кОм	2.0 4.5 6.0		80* 75* 70*		

 * T_A=25±10°C

4

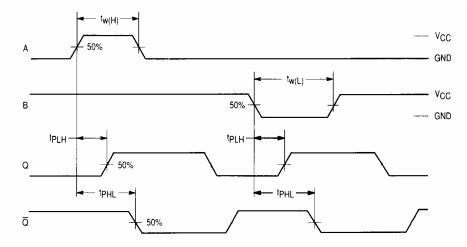


Рисунок 1. Временная диаграмма

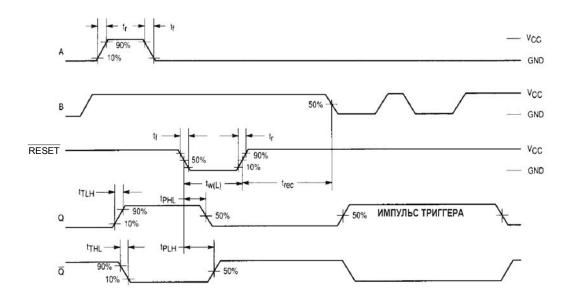
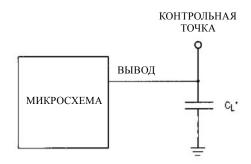
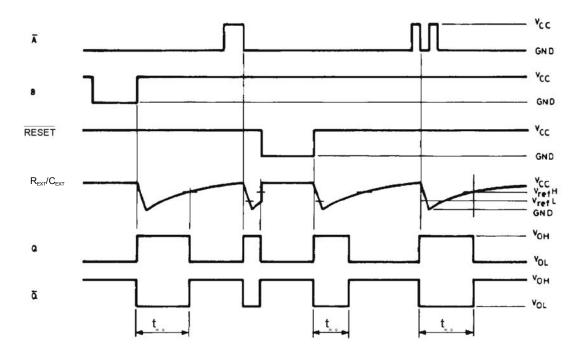
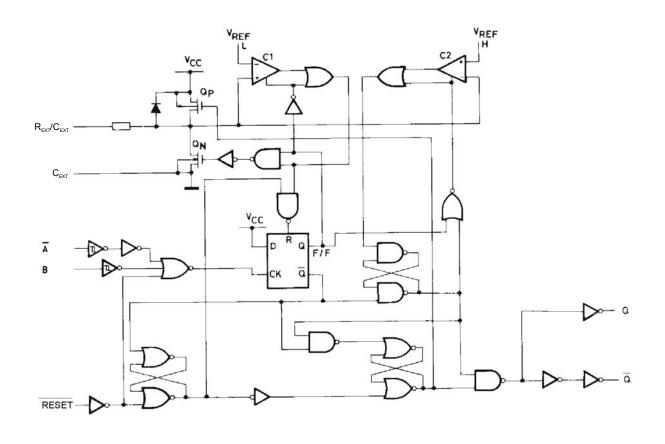



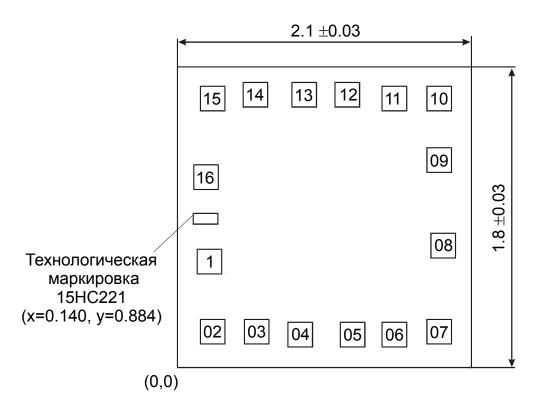
Рисунок 2. Временная диаграмма



*Включает емкость измерителя и оснастки


Рисунок 3. Схема включения при испытании

ВРЕМЕННЫЕ ДИАГРАММЫ



ДОПОЛНИТЕЛЬНАЯ ЛОГИЧЕСКАЯ ДИАГРАММА

ПЛАН КРИСТАЛЛА ІZ74НС221

Размер контактных площадок 0.106×0.106 мм (Размер указан по слою "пассивация") Толщина кристалла 0.46 ± 0.02 мм

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК

Номер контактной	Обозначение	Координаты			
площадки		(левый нижний угол), мм			
		X	Y		
01	<u>1A</u>	0.152	0.419		
02	1B	0.157	0.132		
03	1RESET	0.458	0.134		
04	<u>1Q</u>	0.715	0.122		
05	2Q	1.310	0.122		
06	$2C_{EXT}$	1.585	0.122		
07	$2R_{\rm EXT}/C_{\rm EXT}$	1.836	0.132		
08	GND	1.847	0.690		
09	<u>2A</u>	1.836	1.275		
10	2B	1.837	1.562		
11	2RESET	1.536	1.560		
12	2 Q	1.278	1.572		
13	1Q	0.684	1.572		
14	1C _{EXT}	0.408	1.572		
15	1R _{EXT} /C _{EXT}	0.158	1.562		
16	V _{CC}	0.147	1.004		

