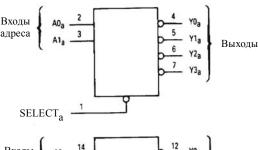
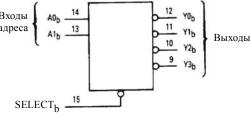
IN74HC139A

Два дешифратора-демультиплексора 2-4 с инверсией на выходе

Микросхемы IN74HC139A по назначению выводов совместимы с микросхемами серий LS/ALS139. Входные уровни напряжений совместимы со стандартными К-МОП уровнями.

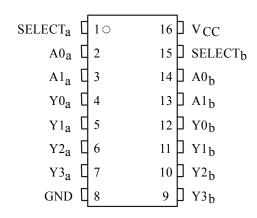

Микросхема состоит из двух идентичных декодеров 1-4, каждый из которых декодирует двухразрядный адрес в 1-4 активно-низкий выход.


Активно-низкий вход Select управляет выполнение демультиплексирование и последовательное включение.

Функция демультиплексирования выполняется выборкой одного выхода с использованием входов Address и входа Select, как входа данных.

- Выходные уровни напряжений совместимы с входными уровнями К-МОП, N-МОП и ТТЛ микросхем
- Диапазон напряжения питания от 2.0 до 6.0 В
- Низкий входной ток 1.0 мкА
- Высокая помехоустойчивость КМОП приборов

УСЛОВНОЕ ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ



ВЫВОД $16 = V_{CC}$ ВЫВОД 8 = GND

НАЗНАЧЕНИЕ ВЫВОДОВ

ТАБЛИЦА ИСТИННОСТИ

Входы			Выходы			
Select	A1	A0	Y0	Y1	Y2	Y3
Н	X	X	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

X = любой уровень напряжения H или L

ПРЕДЕЛЬНЫЕ РЕЖИМЫ*

Обознач. параметра	Наименование параметра	Норма, не более	Един. измерен.
V _{CC}	Напряжение питания (относительно GND)	-0.5 to +7.0	В
V _{IN}	Входное напряжение (относительно GND)	-1.5 to V _{CC} +1.5	В
V _{OUT}	Выходное напряжение (относительно GND)	-0.5 to V _{CC} +0.5	В
I_{IN}	Входной ток по выводу	±20	мА
I _{OUT}	Выходной ток по выводу	±25	мА
I_{CC}	Ток потребления	±50	мА
P _D	Мощность рассеивания при свободном обмене воздуха, пластмассовый DIP** SOIC**	750 500	мВт
Tstg	Температура хранения	-65 to +150	°C
$T_{\rm L}$	Допустимая температура вывода на расстоянии 1 мм от корпуса в течении 10 с	260	°C

^{*} Превышение предельных режимов может привести к катастрофическому отказу микросхемы. Рабочие режимы должны соответствовать предельно допустимым режимам, приведенным ниже.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ РЕЖИМЫ

Обознач.	Наименование параметра		рма	Един.
параметра		Не мене е	Не более	измерен.
V_{CC}	Напряжение питания (относительно GND)	2.0	6.0	В
V_{IN}, V_{OUT}	Входное напряжение, выходное напряжение (относительно GND)	0	V _{CC}	В
T_{A}	Температура хранения для всех видов корпусов	-55	+125	°C
t_r , t_f	Время фронта нарастания и время фронта V_{CC} =2.0 В спада сигнала (Рисунок 1-2) V_{CC} =4.5 В V_{CC} =6.0 В	0 0 0	1000 500 400	нс

Микросхема содержит схемное решение по ее защите от статического электричества и электронных полей. В связи с этим она должна использоваться в тех схемах применения, в которых нет больших входных воздействий по напряжению. Для правильного использования напряжения V_{IN} и V_{OUT} должны быть в диапазоне $\text{GND} \leq (V_{\text{IN}}$ или $V_{\text{OUT}}) \leq V_{\text{CC}}$.

Неиспользуемые входы должны всегда привязываться к соответствующему логическому уровню напряжения (например GND или $V_{\rm CC}$). Неиспользуемые выходы должны быть оставлены незадействованными.

^{**}При эксплуатации в диапазоне температур $65^{\circ} \div 125^{\circ}$ С значение мощности рассеивания снижается для пластмассового DIP корпуса на 10 мВт/ $^{\circ}$ С, для SOIC - на 7 мВт/ $^{\circ}$ С

СТАТИЧЕСКИЕ ПАРАМЕТРЫ (Напряжение относительно GND)

Обознач.	Наименование	Режим измерения	V _{CC}		Норма		Един.
параметра	параметра		В	25 °C ÷ -55°C	≤85 °C	≤125 °C	измер.
V _{IH}	Минимальное входное напряжение высокого уровня	$V_{ m OUT}$ =0.1В или $V_{ m CC}$ -0.1 В $\mid I_{ m OUT} \mid \leq 20$ мкА	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	В
V _{IL}	Максимальное входное напряжение низкого уровня	$oxed{V_{OUT}=0.1~B}$ или $oxed{V_{CC}-0.1~B}$ $oxed{I_{OUT}\leq 20~MKA}$	2.0 4.5 6.0	0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	В
$ m V_{OH}$	Минимальное выходное напряжение высокого уровня	$egin{aligned} V_{\text{IN}} = & V_{\text{IH}} \ \text{или} \ V_{\text{IL}} \ & I_{\text{OUT}} \ & \leq 20 \ \text{мкA} \end{aligned}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	В
		$egin{align*} V_{\mathrm{IN}} = V_{\mathrm{IH}} \ \mathrm{или} \ V_{\mathrm{IL}} \ \ \mathrm{I}_{\mathrm{OUT}} \ \leq 4.0 \ \mathrm{MA} \ \ \mathrm{I}_{\mathrm{OUT}} \ \leq 5.2 \ \mathrm{MA} \ \end{split}$	4.5 6.0	3.98 5.48	3.84 5.34	3.7 5.2	
$ m V_{OL}$	Максимальное выходное напряжение низкого уровня	$egin{aligned} V_{\text{IN}} = V_{\text{IH}} \ \text{или} \ V_{\text{IL}} \ \ I_{\text{OUT}} \ \leq 20 \ \text{мкA} \end{aligned}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	В
		$egin{aligned} & V_{\text{IN}}\!\!=\!\!V_{\text{IH}} \text{ или } V_{\text{IL}} \ & I_{\text{OUT}} \ & \leq 4.0 \text{ мA} \ & I_{\text{OUT}} \ & \leq 5.2 \text{ мA} \end{aligned}$	4.5 6.0	0.26 0.26	0.33 0.33	0.4 0.4	
I_{IN}	Максимальный входной ток высокого/низкого уровня	V _{IN} =V _{CC} или GND	6.0	±0.1	±1.0	±1.0	мкА
I_{CC}	Максимальный ток потребления	$V_{\text{IN}}\!\!=\!\!V_{\text{CC}}$ или GND $I_{\text{OUT}}\!\!=\!\!0$ мк A	6.0	4.0	40	160	мкА

ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ (С	$_{\rm I}$ =50пФ. $t_{\rm r}$ = $t_{\rm f}$ =6.0 нс))
---------------------------	--	---

Обознач.	Наименование параметра	V_{CC}		Норма		Един.
параметра		В	25 °C	≤85	≤125	измер.
			÷	°C	°C	
			-55°C			
$t_{\rm PLH},t_{\rm PHL}$	Максимальное время задержки распростране-	2.0	115	145	175	нс
	ния при включении/выключении по входу	4.5	23	29	35	
	Select (Рисунок 1 и 3)	6.0	20	25	30	
t _{PLH} , t _{PHL}	Максимальное время задержки распростране-	2.0	115	145	175	нс
	ния при включении/выключении по входу А	4.5	23	29	35	
	(Рисунок 2 и 3)	6.0	20	25	30	
$t_{\mathrm{TLH}},t_{\mathrm{THL}}$	Максимальное время перехода при включе-	2.0	75	95	110	нс
	нии/выключении (Рисунок 1 и 3)	4.5	15	19	22	
	(J	6.0	13	16	19	
C _{IN}	Максимальная входная емкость	6.0	10	10	10	пФ

	при	T=25°C,Vcc=5.0 []	
C_{PD}	$P_D = C_{PD}V_{CC}^2 f + I_{CC}V_{CC}$	55 (типовое значение	пФ

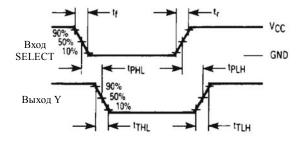
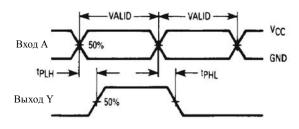
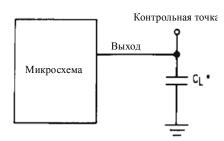
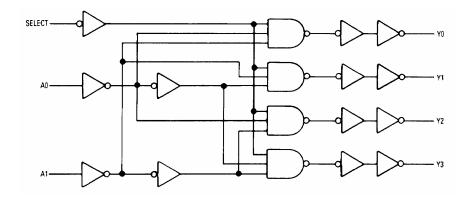
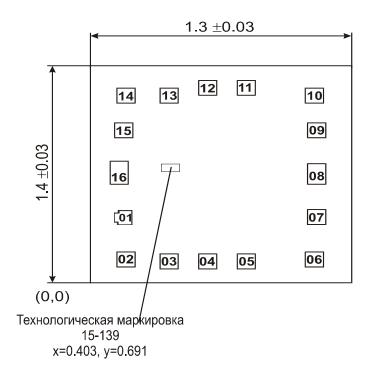


Рисунок1. Временная диаграмма


Рисунок 2. Временная диаграмма

* Включает емкость измерителя и оснастки


Рисунок 3. Схема включения при измерении

Дополнительная логическая диаграмма (1/2 часть устройства)

ПЛАН КРИСТАЛЛА І Т74НС139А

Размер контактных площадок указан по слою "пассивация" Толщина кристалла $0,46\pm0,02$ мм

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК

Номер контактной	Обозначение	Коорд	Размер	
площадки		(левый нижний угол), мм		контактных
		X	Y	площадок
01	SELECT a	0.152	0.366	0.106x0.106
02	A0a	0.162	0.132	0.106x0.106
03	Ala	0.422	0.122	0.106x0.106
04	Y0a	0.590	0.122	0.106x0.106
05	Yla	0.772	0.122	0.106x0.106
06	Y2a	1.088	0.122	0.106x0.106
07	Y3a	1.088	0.333	0.106x0.106
08	GND	1.088	0.619	0.106x0.173
09	Y0b	1.088	0.972	0.106x0.106
10	Y1b	1.078	1.173	0.106x0.106
11	Y0b	0.722	1.183	0.106x0.106
12	Y1b	0.566	1.183	0.106x0.106
13	A2b	0.396	1.153	0.106x0.106
14	A3b	0.162	1.173	0.106x0.106
15	SELECT b	0.152	0.938	0.106x0.106
16	Vcc	0.122	0.591	0.106x0.221

