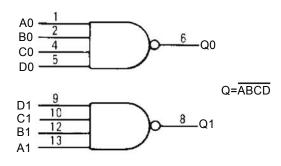
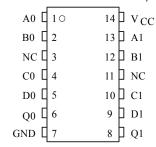
IN74AC20


Два логических элемента 4И-НЕ

IN74AC20 по назначению выводов идентична LS/ALS20, HC/HCT20. Входные уровни микросхемы совместимы со стандартными КМОП уровнями; с согласующими резисторами совместимы с LS/ALS уровнями.

- Выходные уровни напряжений совместимы с входными уровнями КМОП. N-МОП и ТТЛ микросхем
- Диапазон напряжения питанияо от 2.0 В до 6.0 В
- Низкий входной ток: 1.0 мкА; 0.1 мкА для 25°C
- Высокая помехоустойчивость КМОП приборов
- Выходной ток 24 мА


N ИНДЕКС пластмассовый ОБОЗНАЧЕНИЕ МИКРОСХЕМЫ IN74AC20N пластмассовый IN74AC20D SOIC IZ74AC20 кристалл T_A = -45° ÷ 85° С для всех типов корпусов

СТРУКТУРНАЯ СХЕМА

ВЫВОД $14 = V_{CC}$ ВЫВОД 7 = GNDВЫВОДЫ 3,11 = HE ЗАДЕЙСТВОВАНЫ

НАЗНАЧЕНИЕ ВЫВОДОВ

NC = НЕ ЗАДЕЙСТВОВАН

ТАБЛИЦА ИСТИННОСТИ

	Выходы			
A	В	C	D	Q
L	X	X	X	Н
X	L	X	X	Н
X	X	L	X	Н
X	X	X	L	Н
Н	Н	Н	Н	L

X = любой уровень напряжения Н или L

ПРЕДЕЛЬНЫЕ РЕЖИМЫ*

Обознач. параметра	Наименование параметра	Норма, не более	Един. измерен.
V_{CC}	Напряжение питания (относительно GND)	-0.5 ÷ +7.0	В
V_{IN}	Входное напряжение (относительно GND)	$-0.5 \div V_{CC} + 0.5$	В
V_{OUT}	Выходное напряжение (относительно GND)	$-0.5 \div V_{CC} + 0.5$	В
I_{IN}	Входной ток по выводу	±20	мА
I_{OUT}	Выходной ток по выводу	±50	мА
I_{CC}	Ток потребления	±50	мА
P_{D}	Мощность рассеивания при свободном обмене воздуха, Пластмассовый ${\rm DIP}^{**}$ ${\rm SOIC}^{**}$	750 500	мВт
Tstg	Температура хранения	-65 ÷ +150	°C
$T_{\rm L}$	Допустимая температура вывода на расстоянии 1 мм от корпуса в течении 10 с	260	°C

^{*}Превышение предельных режимов может привести к катастрофическому отказу микросхемы. Рабочие режимы должны соответствовать предельно допустимым режимам, приведенным ниже.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ РЕЖИМЫ

Обознач.	Наименование параметра		Норма	
параметра		He менее	Не более	измерен.
V _{CC}	Напряжение питания (относительно GND)	2.0	6.0	В
V_{IN}, V_{OUT}	Входное напряжение, выходное напряжение (относительно GND)	0	V _{CC}	В
T_{J}	Температура перехода		140	°C
T_{A}	Рабочая температура	-45	+85	°C
I_{OH}	Выходной ток высокого уровня		-24	MA
I_{OL}	Выходной ток низкого уровня		24	мА
t_r , t_f	Время фронта нарастания и время $V_{CC} = 3.0 \; B$ фронта спада сигнала* $V_{CC} = 4.5 \; B$ $V_{CC} = 5.5 \; B$	0 0 0	150 40 25	нс/В

 $^{^*}V_{IN} = 30\% \div 70\% V_{CC}$

Микросхема содержит схемное решение по ее защите от статического электричества и электронных полей. В связи с этим она должна использоваться в тех схемах применения, в которых нет больших входных воздействий по напряжению. Для правильного использования напряжения $V_{\rm IN}$ и $V_{\rm OUT}$ должны быть в диапазоне $GND \leq (V_{\rm IN}$ или $V_{\rm OUT}) \leq V_{\rm CC}$.

Неиспользуемые входы должны всегда привязываться к соответствующему логическому уровню напряжения (например GND или V_{CC}). Неиспользуемые выходы должны быть оставлены незадействованными.

^{**}При эксплуатации в диапазоне температур $65^{\circ} \div 85^{\circ}$ С значение мощности рассеивания снижается для пластмассового DIP корпуса на 10 мВт/°С, для SOIC - на 7 мВт/ °С

СТАТИЧЕСКИЕ ПАРАМЕТРЫ (Напряжение относительно GND)

Обознач.	Наименование	Режим измерения	V_{CC}	Норма		Един.
параметра	параметра		В	25 °C	-45°C ÷ 85°C	измер.
$ m V_{IH}$	Минимальное входное напряжение высокого уровня	V _{OUT} =0.1 В или V _{CC} -0.1 В	3.0 4.5 5.5	2.1 3.15 3.85	2.1 3.15 3.85	В
$ m V_{IL}$	Максимальное входное напряжение низкого уровня	V _{OUT} =0.1 В или V _{CC} -0.1 В	3.0 4.5 5.5	0.9 1.35 1.65	0.9 1.35 1.65	В
$ m V_{OH}$	Минимальное выходное напряжение высокого уровня	I _{OUT} ≤ -50 мкА	3.0 4.5 5.5	2.9 4.4 5.4	2.9 4.4 5.4	В
	высокого уровня	* V $_{IN}$ =V $_{IH}$ или V $_{IL}$ I $_{OH}$ =-12 мА I $_{OH}$ =-24 мА I $_{OH}$ =-24 мА	3.0 4.5 5.5	2.56 3.86 4.86	2.46 3.76 4.76	
V _{OL} Максимальное выходное напряжение		$I_{OUT} \le 50$ мк A	3.0 4.5 5.5	0.1 0.1 0.1	0.1 0.1 0.1	В
	низкого уровня	$ ^*V_{IN} = V_{IH} $ $I_{OL} = 12 \text{ mA} $ $I_{OL} = 24 \text{ mA} $ $I_{OL} = 24 \text{ mA} $	3.0 4.5 5.5	0.36 0.36 0.36	0.44 0.44 0.44	
I_{IN}	Максимальный входной ток высокого/низкого уровня	V _{IN} =V _{CC} или GND	5.5	±0.1	±1.0	мкА
I_{OLD}	Минимальный выходной ток низкого уровня**	V _{OLD} =1.65 B Max	5.5	90	75	мА
I _{OHD}	Минимальный выходной ток высокого уровня**	V _{OHD} =3.85B Min	5.5	-90	-75	мА
I_{CC}	Максимальный ток потребления	V _{IN} =V _{CC} или GND	5.5	4.0	40	мкА

 $^{^*}$ Все выходы нагружены, значение входного напряжения определяется состоянием выхода в тесте ** Длительность воздействия режима не более 2.0 мс, нагрузка подается на измеряемый выход Примечание: Значения $I_{\rm IN}$ и $I_{\rm CC}$ при напряжении питания 3.0 В гарантированы меньше или равны, установленным значениям при $V_{\rm CC}$ =5.5 В

ДИНАМИЧЕСКИЕ	ПАРАМЕТРЫ	$(C_1 = 50 \pi \Phi \ t = t = 3.0 нс)$
	HALANIE II DI	(C) -3011\P. \(\bar{\pi}\)-14-3.0 \(\text{nc}\)

Обознач.	Наименование параметра	${ m V_{CC}}^*$	Норма		Един.		
параметра		В	25 °C -45°C ÷ 85		÷ 85°C	измер.	
			Min	Max	Min	Max	
$t_{ m PLH}$	Время задержки распространения при включении по входам A , B, C или D к выходу Q (Рисунок 1)	3.3 5.0	2.0 1.5	8.5 7.0	1.5 1.0	10.0 8.0	нс
$t_{ m PHL}$	Время задержки распространения при выключении по входам A , B, C или D к выходу Q (Рисунок 1)	3.3 5.0	1.5 1.5	7.0 6.0	1.0 1.0	9.0 7.0	нс
C_{IN}	Максимальная входная емкость	5.0	4	.5		-	пФ

C_{PD}	Динамическая емкость (для одного	$T=25$ °C, $V_{CC}=5.0 B$	пФ
	логического элемента)	40 (типовое значение)	

 $^{^*}$ Допустимое изменение напряжения питания 3.3 B ± 0.3 B Допустимое изменение напряжения питания 5.0 B ± 0.5 B

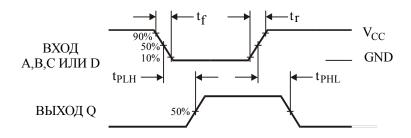
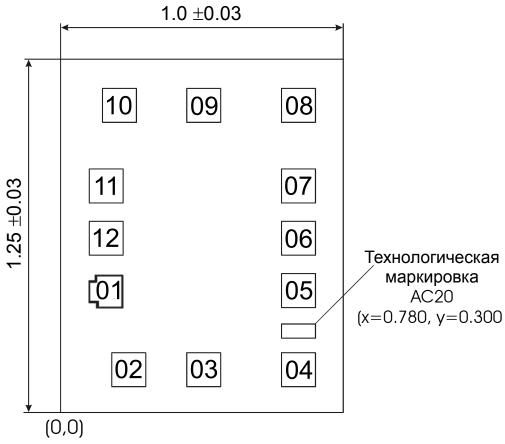



Рисунок 1. Временная диаграмма

ПЛАН КРИСТАЛЛА ІZ74АС20

Толщина кристалла 0,46±0,02 мм

Размер контактных площадок 0.120х0.120 мм (Размер указан по слою "металлизация")

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК

Номер контактной площадки	Обозначение		инаты ий угол), мм
		X	Y
01	A0	0.100	0.380
02	В0	0.180	0.100
03	C0	0.445	0.100
04	D0	0.780	0.100
05	Q0	0.780	0.380
06	GND	0.780	0.565
07	Q1	0.780	0.750
08	D1	0.780	1.035
09	C1	0.445	1.035
10	B1	0.147	1.035
11	A1	0.100	0.750
12	Vcc	0.100	0.565

