Микросхема IL809SW – микросхема системного сброса при аварийной работе источника питания. Функциональный аналог STM809SW ф. STM, Франция. Предназначена для применения в современных системах обработки информации с целью увеличения их надежности, улучшения качества их работы и потребительских свойств.

Микросхема выполняет следующие функции:

- вырабатывает сигнал системного сброса при включении питания;
- вырабатывает сигнал системного сброса при понижении напряжения питания ниже порогового уровня определяемого напряжением U_{RST} .

Pисунок 1 - Микросхема IL809SW в корпусе SOT23-3

Основные характеристики:

- один источник питания $U_{CC} = (1,0-5,5)$ B;
- температурный диапазон от минус 40 до плюс 85 °C;
- допустимое значение потенциала статического электричества 2000 В;
- не требует для функционирования дополнительных элементов обвязки.

Таблица 1 – Назначение выводов ИМС в корпусе и контактных площадок кристалла

Номер вывода	Номер контактной площадки	Обозначение	Назначение
01	01	GND	Общий вывод
02	02	RST	Выход сигнала сброса
03	03	V _{cc}	Вывод питания от источника напряжения

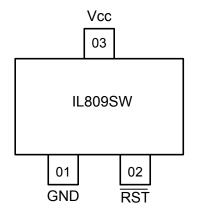


Рисунок 2 – Обозначение выводов в корпусе

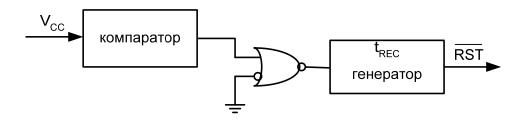


Рисунок 3 – Структурная схема

Таблица 2 - Предельные электрические режимы

Наименование параметров режима, единица измерения	Обозначение параметра	Нор	Единица измерения	
	парашотра	не менее	не более	violilop o i ivisi
Напряжение питания	U_{CC}	-0,3	7,0	В
Постоянный ток выходного диода	I _{OD}	-	±20	мА
Диапазон рабочих температур	Та	-40	85	°C
Температура хранения	T_{STG}	-55	150	°C

Таблица 3 - Предельно-допустимые режимы эксплуатации

Наименование параметров режима, единица измерения	Обозначение параметра	Нор	Единица измерения	
одиница иомерении	Параметра	не менее	не более	VIOWEPETIVIZI
Напряжение питания	U _{CC}	1,0	5,5	В
Диапазон рабочих температур	Та	-40	85	°C

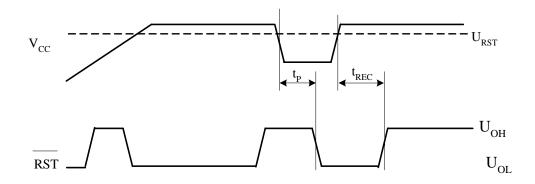
Таблица 4 – Электрические характеристики

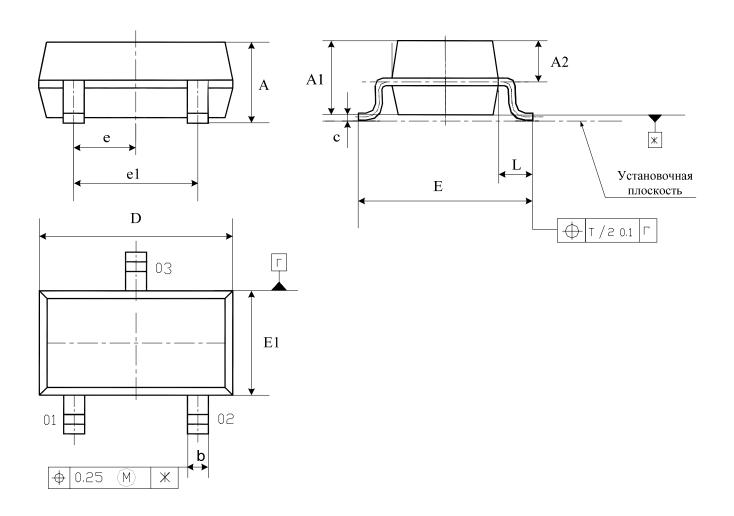
Наименование	Буквенное		Нор	Темпера-	
параметра, единица измерения	обозначе- ние	Режим измерения	не менее	не более	тура среды, °С
Ток потребления в, мкА	1	U _{CC} = 3,6 B		10,0	25 ± 10;
ток потреоления в, мка	I _{CC}	U _{CC} = 5,5 B	_	15,0	-40; 85
Выходное напряжение	11	I _{OL} = 1,2 mA; U _{CC} = U _{RSTmin}		0,3	25 ± 10; -40; 85
низкого уровня, В	U _{OL}	I _{OL} = 50 мкА; U _{CC} = 1,0 В	_	0,3	25 ± 10; -40; 85
Выходное напряжение высокого уровня, В	U _{OH}	I_{OH} = 500 MKA; $U_{RSTmax} < U_{CC} < 5,5$ B	0,8 x U _{CC}	_	25 ± 10; -40; 85
Напряжение порога	U_RST		2,89	2,96	25 ± 10
срабатывания, В	URST		2,85	3,00	-40; 85

Описание работы схемы:

Сброс при включении питания и изменении питания до уровня Ucc < U_{RST}

Когда напряжение Ucc повышается, детектор напряжения удерживает сигнал сброса в активном состоянии до тех пор, пока Ucc не превысит уровень U_{RST} и удерживается в активном состоянии в течение времени (не менее 280 мс), которое определяется частотой внутреннего генератора и выбранной разрядностью внутреннего счетчика с помощью которого вырабатывается сигнал \overline{RST} заданной длительности и сигнал остановки внутреннего генератора.

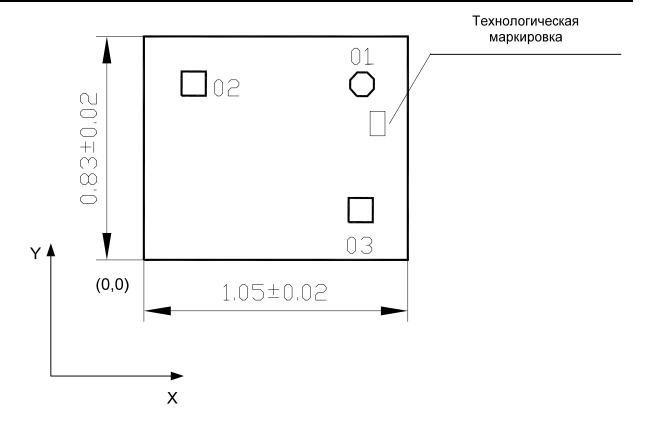



Рис.4 - Временная диаграмма вырабатывания сигнала \overline{RST}

Если питающее напряжение циклически изменяется, его уровень должен упасть ниже значения U_{RST} , чтобы гарантировано появился новый сигнал \overline{RST} , когда напряжение восстановится снова. Если напряжение Ucc не падает ниже уровня U_{RST} сигнал \overline{RST} не генерируется.

Таблица 5 – Справочные электрические параметры

Наименование параметра, единица	Буквенное	Норма			Температура	
измерения	обозначение	не	типовое	не	среды, °С	
VISIMOPOLIVIA	0003Ha 4CHVIC	менее	значение	более	ороды, о	
Температурный коэффициент напря-	K _{T URST}	-	45	-	25 ± 10	
жения порога срабатывания,						
млн ⁻¹ /°C						
Время задержки срабатывания сигнала	t _P	-	20	-		
сброса \overline{RST} от изменения напряжения						
питания, мкс						
Длительность сигнала сброса, мкс	t _{REC}	140		280		


ГАБАРИТНЫЕ РАЗМЕРЫ КОРПУСА

	Α	A1	A2	b	С	D	Е	E1	е	e1	L
	Миллиметры										
min	1,00	0,75	0,50	0,38	0,09	2,80	2,48	1,38	0,95	1,90	0,50
max	1,20	0,95	0,65	0,50	0,15	3,00	2,50	1,40	0,95	1,90	0,60
	Дюймы										
min	0,039	0,030	0,020	0,015	0,004	0,110	0,097	0,054	0,037	0,075	0,020
max	0,047	0,037	0,026	0,020	0,006	0,118	0,098	0,055	0,037	0,075	0,024

Рисунок 5 — Габаритные размеры корпуса типа SOT23-3

Координаты технологической маркировки (мм): левый нижний угол x = 0.91, y = 0.46. Толщина кристалла 0.46 ± 0.02 мм.

Номер контактной	Координаты (левь	Размер контактных	
площадки	Х	У	площадок, мм
01	0,82	0,61	0,09 x 0,09
02	0,20	0,61	0,09 x 0,09
03	0,82	0,14	0,09 x 0,09

Примечание – Координаты и размеры контактных площадок даны по слою «Металлизация»

Рисунок 6 - Внешний вид кристалла и координаты контактных площадок

