КОРРЕКТР ФАКТОРА МОЩНОСТИ IL6562

(функциональный аналог L6562 ф.STMicroelectronics)

Микросхема корректора фактора мощности разработана для использования в качестве первичного преобразователя в системах электронного баланса, в системах автономных преобразователей мощности, в AC-DC адаптерах, зарядных устройствах и др.

Пластмассовый корпус MS-012AA (SO-8)

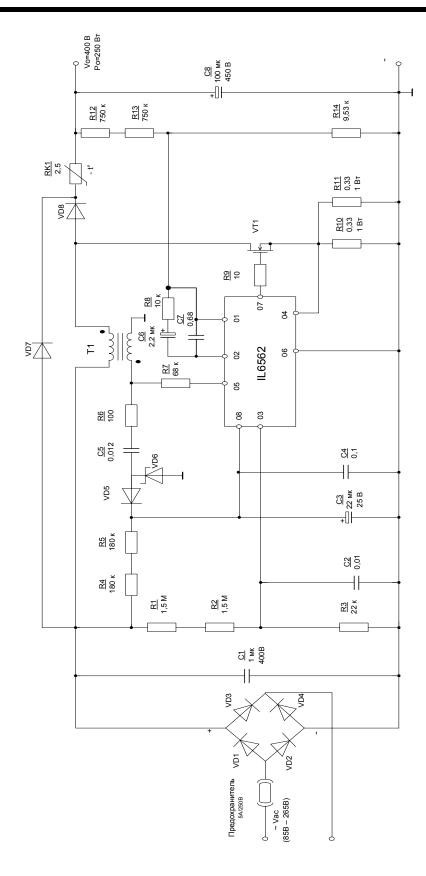
Рисунок 1 – Микросхема в корпусе

Микросхема предназначена для компенсации суммарного фазового сдвига между током и напряжением путём внесения опережения по фазе в узлах сети. Это приводит к снижению паразитных активных потерь в проводниках электрических сетей и распределительном оборудовании.

Особенности микросхемы:

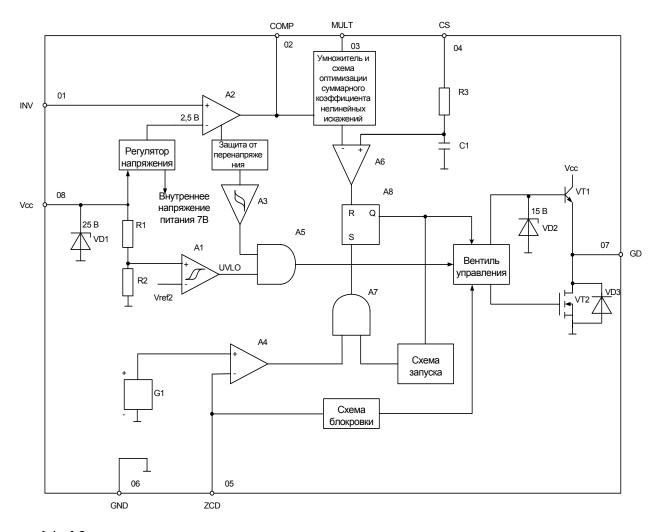
- коррекция коэффициента мощности в переключающем режиме;
- оригинальная конструкция умножителя, разработанного для минимизации суммарного значения коэффициента нелинейных искажений входного переменного тока;
 - точная регулируемая защита от перенапряжения на выходе микросхемы;
 - низкий ток запуска;
 - низкий (не более 70 мкА) ток потребления в режиме покоя;
 - ток потребления в рабочем режиме не более 5 мА;
 - расширенный диапазон напряжения питания до 22 В;
 - встроенный фильтр в блоке контроля тока;
 - функция блокировки;
 - точный внутренний источник опорного напряжения;
- двухтранзисторный выходной каскад вентиля управления с блокировкой пониженного напряжения и стабилизатором напряжения.

Микросхема выполнена в 8 - выводном пластмассовом SO-8 корпусе типа MS-012AA.


Масса микросхемы составляет не более 0,15 г

Типовая схема включения микросхемы при применении приведена на рисунке 2.

Таблица 1 – Назначение выводов микросхемы


Номер вывода	Обозначение	Назначение
корпуса		
01	INV	Вход инвертирующий усилителя ошибки
02	COMP	Выход усилителя ошибки
03	MULT	Вход умножителя
04	CS	Вход ШИМ компаратора
05	ZCD	Вход контролирующий
06	GND	Общий вывод
07	GD	Выход управляющего вентиля
08	V _{CC}	Вывод питания от источника напряжения

T1 — трансформатор VD1 — VD5, VD7, VD8 — диоды VD6 — диод Шотки VT1 — транзистор

Рисунок 2 – Типовая схема включения микросхем при применении

А1, А6 – компараторы

А2 – усилитель ошибки

А3 – триггер Шмитта

А4 – детектор нулевого тока

А5, А7 - логические элементы «И»

А8 – триггер

С1 – конденсатор емкостью 5 пФ

G1- источник опорного напряжения от 1,6 до 2,1 В

R1, R2, R3 – резисторы

VD1, VD2 – стабилитроны

VD3 - защитный диод

VT1, VT2 – транзисторы

Рисунок 3 – Схема электрическая структурная

Таблица 2 - Предельные электрические режимы

Обозначе-	Наименование параметра	Hoj	Норма				
ние пара-		не менее	не более	измере-			
метра				РИЯ			
U_CC	Напряжение питания	-	22,5	В			
U ₁₋₄	Напряжение на аналоговых вхо-	- 0,3	8,0	В			
	дах и выходах (выводы 1-4)						
I _{ZCDsink}	Максимальный ток детектора ну-	-	10,0	мА			
	левого тока (втекающий)						
I _{ZCDsource}	Максимальный ток детектора ну-	-	- 50,0	мА			
	левого тока (вытекающий)						
P _{tot}	Максимальная рассеиваемая	-	0,65	Вт			
	мощность (при T _A = 50 °C)						
T _A	Температура окружающей среды	- 60 ¹⁾	150	°C			
TJ	Рабочая температура кристалла	- 60 ¹⁾	150	°C			
T _{stg}	Температура хранения	- 60	150	°C			
1)							
¹⁾ – Указана температура среды							

Таблица 3 - Предельно допустимые режимы эксплуатации

таолица о - предельно допустимые режимы эксплуатации								
Обозначе-	Наименование параметра	Норма Е		Единица				
ние пара-		не менее не более		измерения				
метра								
U _{CC}	Напряжение питания	10,3	22,0	В				
T _A	Температура окружающей среды	- 25	125	°C				
TJ	Рабочая температура кристалла	- 25 ¹⁾	125	°C				

^{1) –} Указана температура среды

Таблица 4 - Электрические параметры микросхем при T_J от минус $25^{1)}$ до плюс $125~^{\circ}C$, U_{CC} = 12~B, C_L = $1~\mu\Phi$

	Наименование пара-	Режим измерения	Нор	ма	Единица					
ное	метра	·	не ме-	не бо-	измере-					
обозна-			нее	лее	ния					
чение										
Напряжение питание										
U _{CC}	Диапазон напряже- ния питания	После включения	10,3	22,0	В					
U _{CCon}	Порог напряжения включения	-	11,0	13,0	В					
U _{CCOff}	Порог напряжения выключения	-	8,7	10,3	В					
U _{HYS}	Гистерезис напряжения включения	-	2,2	2,8	В					
Uz	Напряжение стаби- литрона	I _{CC} = 20 MA	22,0	28,0	В					
		Ток потребления		•						
I _{start-up}	Стартовый ток по- требления (ток за- пуска)	До включения, U _{CC} = 11 В	-	70,0	мкА					
I _{q1}	Статический ток по- требления	После включения	-	3,75	мА					
Icc	Ток потребления в рабочем режиме	f = 70 кГц	-	5,0	мА					
I _{q2}	Статический ток потребления в режиме пониженного потребления	Во время срабатывания OVP (защиты от перена- пряжения, либо статиче- ской, либо динамической) или U _{ZCD} = 150 мВ	-	2,2	мА					
		Вход умножителя								
I _{MULT}	Входной ток смеще- ния по входу умно- жителя	U _{MULT} от 0 до 4 В	-	- 1,0 ²⁾	мкА					
$\Delta U_{CS}/\Delta U_{MULT}$	Максимальный на- клон выходного сиг- нала	U _{MULT} от 0 до 0,5B U _{COMP} = Upper clamp (высо- кий уровень стабилизации)	1,65	-	B/B					
K	Коэффициент усиления умножителя ²⁾	$U_{MULT} = 1 B,$ $U_{COMP} = 4 B$	0,5	0,7	1/B					

Продолжение таблицы 4

	ение таблицы 4	D.									
Буквен-	•	Режим измерения	Нор		Единица						
ное	метра		не ме-	не бо-	измере-						
обозна-			нее	лее	РИЯ						
чение											
11	U_{INV} Входной порог уси- $T_{\text{J}} = 25^{\circ}\text{C}$ 2,465 2,535 В										
UINV	· · ·										
	лителя ошибки	10,3 B < U _{CC} < 22 B	2,44	2,56	B						
U _{REG}	Напряжение управ- ления	U _{CC} от 10,3 до 22 В	-	5,0	мВ						
I _{INV}	Входной ток смеще- ния усилителя ошиб- ки	U _{INV} = 0 ÷ 3 B	ı	- 1,0	мкА						
Gv	Усиление по напря- жению без ОС	Обратная связь отсутствует	60,0	-	дБ						
I _{O COMP}	Вытекающий ток	$U_{COMP} = 4 B,$ $U_{INV} = 2,4 B$	- 2,0	- 5,0	мА						
I _{I COMP}	Втекающий ток	$U_{COMP} = 4 B,$ $U_{INV} = 2,6 B$	2,5	-	мА						
U _{H COMP}	Высокий уровень на- пряжения стабилиза- ции	I _{SOURCE} = 0,5 мА (вытекающий ток)	5,3	6,7	В						
U _{L COMP}	Низкий уровень на- пряжения стабилиза- ции	I _{SINK} = 0,5 мА (втекающий ток)	2,1	2,4	В						
		Компаратор контроля тока									
	Входной ток смеще- ния по входу ШИМ- компаратора	$U_{CS} = 0$	-	- 1,0 ²⁾	мкА						
` ,	Время задержки рас- пространения	-	-	350,0	HC						
U _{CS clamp}	Опорное напряжение блока контроля тока	U _{COMP} = Upper clamp (высо- кий уровень стабилизации)	1,6	1,8	В						
		Детектор нулевого тока		1							
U _{ZCDH}	Высокий уровень стабилизации напря- жения	I _{ZCD H} = 2,5 MA	5,0	6,5	В						
U _{ZCDL}	Низкий уровень ста- билизации напряже- ния	I _{ZCD L} = - 2,5 мА	0,3	1,0	В						
I _{ZCDsrc}	Вытекающий ток	-	- 2,5	- 5,5	мА						
I _{ZCDsnk}	Втекающий ток	-	2,5	-	мА						
U _{ZCDdis}	Пороговое напряже-	-	150,0	250,0	мВ						
U _{ZCDen}	ние выключения Пороговое напряже-	-	-	350,0	мВ						
	ние перезапуска										

Продолжение таблицы 4

Буквен-	Наименование пара-	Режим измерения	Нор	ма	Единица
ное	метра	•	не ме-	не бо-	измере-
обозна-	·		нее	лее	ния
чение					
I _{ZCDres}	Ток перезапуска по-	-	30,0	-	мкА
	сле выключения				
		Схема запуска		•	
t _{START}	Период времени за-	-	75,0	300,0	МКС
	пуска				
	Входя	цая защита от перенапряжен			
I _{OVP}	Ток включения дина-	-	35,0	45,0	мкА
	мической защиты от				
	перенапряжения				
U_OVP	Порог статической	-	2,1	2,4	В
	защиты от перена-				
	пряжения				
		Вентиль управления	_		
U _{OH}	Падение напряжения	$I_{GD \text{ SOURCE}} = 20 \text{ MA}^{4)}$	-	2,6	В
	на выходе	$I_{GD \text{ SOURCE}} = 200 \text{ MA}^{4)}$	-	3,0	В
U_OL		I _{GD SINK} =200мА ⁴⁾	-	1,9	В
t_f	Время спада выход-	-	-	70,0	HC
	ного сигнала				
t_r	Время нарастания	-	-	80,0	HC
	выходного сигнала				
U _{Oclamp}	Выходное стабили-	I _{GD SOURCE} = 5 MA;	10,0	15,0	В
	зирующее напряже-	U_{cc} = 20 B			
	ние				
U _{O(UVLO)}	Блокировка пони-	$U_{CC} = 0 \div U_{CCon}$	-	1,1	В
	женного напряжения	$I_{SINK} = 10 \text{ MA}$			

Примечания

1 Обозначения:

- OVP защита от перенапряжения, либо статическая, либо динамическая;
- U_{ZCD} напряжение по выводу 05;
- U_{MULT} напряжение по выводу 03;
- U_{СОМР} напряжение по выводу 02;
- Upper clamp высокий уровень стабилизации напряжения;
- I_{GD SOURCE} вытекающий ток через вывод 07;
- I_{GD SINK} втекающий ток через вывод 07.
- 2 Знак «минус» перед значением тока указывает его направление (вытекающий). За величину тока принимается его абсолютное значение

Продолжение таблицы 4

1) Указана температура среды.

$$U_{cs} = K \times U_{MULT} \times (U_{COMP} - 2.5 B),$$
 (1)

где К – коэффициент усиления умножителя, 1/В;

U_{MULT} – напряжение по выводу 03, В;

U_{СОМР} – напряжение по выводу 02, В.

 $^{3)}$ $U_{OH} = U_{CC} - U_{GDH}, U_{OL} = U_{GDL},$ (2)

где U_{GDH} и U_{GDL} напряжение высокого и низкого уровня соответственно, на выходе GD относительно общего вывода, B

Таблица 5 – Типовые значения электрических параметров

ное обозна-	Наименование параметра	Режим измерения	Типовое значение	Единица измере- ния
чение				
GB	Произведение коэффициен-	-	1,0	МГц
	та усиления на полосу про-			
	пускания усилителя ошибки			
U _{CSoffset}	Напряжение смещения ком-	$U_{MULT} = 0$	30,0	мВ
	паратора контроля тока	$U_{MULT} = 2,5 B$	5,0	мВ
U_{ZCDA}	Напряжение детектора нуле-	-	2,1	В
	вого тока (передний фронт			
	импульса)			
U _{ZCDT}	Напряжение запуска детек-	-	1,6	В
	тора нулевого тока (задний			
	фронт импульса)			
I _{ZCDb}	Входной ток смещения де-	U _{ZCD} от 1 до 4,5 В	2,0	мкА
	тектора нулевого тока			
I _{HYS}	Ток гистерезиса выходной	-	30,0	мкА
	защиты от перенапряжения			
U _{MULT}	Линейный диапазон напря-	-	От 0 до 3	В
	жения			

Примечание – Типовое значение – среднеарифметическое значение параметра, измеренное на выборке изделий

²⁾ Напряжение на выходе U_{CS}, B, умножителя рассчитывается по формуле:

Функциональное описание

Микросхема состоит из следующих блоков:

- умножитель;
- регулятор напряжения;
- блок защиты от повышенного напряжения;
- детектор нулевого тока;
- вентиль управления;
- схема запуска;
- схема блокировки.

Микросхема I6562D является контроллером коррекции коэффициента мощности. Функционирование микросхемы осуществляется в переключающем режиме.

Коэффициент мощности λ является комплексным показателем, характеризующим эффективность использования ресурсов источника питания, и определяется как отношение между активной (полезной) и полной (активной и реактивной) потребляемой мощностью преобразователя напряжения

$$\lambda = \frac{P_{\text{ex.akm.}}}{P_{\text{bx.nojh.}}},\tag{3}$$

где $P_{\text{вх. акт.}}$ – полезная потребляемая мощность преобразователя напряжения, Вт; $P_{\text{вх. полн.}}$ – полная потребляемая мощность, Вт.

Коэффициент мощности показывает, какая часть потребляемой из первичной сети энергии идет на преобразование, а какая часть энергии не совершает полезной работы (реактивная составляющая), вынуждая разработчика аппаратуры применять провода с увеличенным сечением во избежание перегрева.

На практике отсутствие корректора коэффициента мощности приводит к следующему. При традиционном построении источника питания, когда его входная цепь содержит выпрямительный мост и сглаживающий конденсатор (реактивная нагрузка), ток из сети потребляется кратковременно в виде коротких импульсов, совпадающих с пиковым значением входного напряжения, в сети появляются высшие гармоники тока и искажается форма напряжения сети. Основную опасность представляют все кратные третьей гармоники тока. Эти гармоники из каждой фазы суммируются в нулевом проводнике трехфазной сети, что может привести к его перегреву и возгоранию изоляции. Задача корректора коэффициента мощности состоит в том, чтобы сформировать входной ток источника питания синусоидальной формы, по фазе совпадающий с входным напряжением, т. е. сделать источник питания по отношению к первичной сети активной нагрузкой.

Микросхема IL6562D является однокаскадным ШИМ-контроллером со встроенным корректором коэффициента мощности. На основе данного драйвера возможно построение как гальванически развязанного, так и гальванически связанного с первичной сетью источника питания со стабилизацией по току. Мощность источника питания может варьироваться от нескольких десятков до сотни ватт и даже более (до 250 Вт). Значение максимальной мощности зависит от параметров внешнего ключевого транзистора и габаритной мощности трансформатора.

Микросхема IL6562D разработана для управления преобразователями, работающими в режиме критической проводимости, где схема ШИМ находится в автоколебательном режиме, включение которого обеспечивается детектором нулевой энергии трансформатора, а выключение осуществляется компаратором, чувствительным к току. Детектор нулевой мощности позволяет отключать выход контроллера при малой нагрузке без возникновения опасных перенапряжений.

Через вход MULT с резистивного делителя на микросхему поступает сигнал входного напряжения, полученного после входного выпрямителя. Форма входного напряжения для ШИМ-преобразователя является опорным сигналом, и ток через силовой ключ задается в соответствии с полученной формой входного напряжения, поэтому потребляемый преобразователем ток имеет синусоидальную форму и совпадает по фазе с питающим напряжением. На выходе преобразователя получается стабилизированное напряжение. Высоколинейный умножитель включает специальную схему, способную снижать искажения входного переменного тока, что позволяет расширить диапазон функционирования с предельно низким суммарным значением коэффициента нелинейных искажений даже с широким нагрузочным диапазоном.

Выходное напряжение контролируется усилителем ошибки и точным (1 % при $T_A = 25$ °C) внутренним источником опорного напряжения.

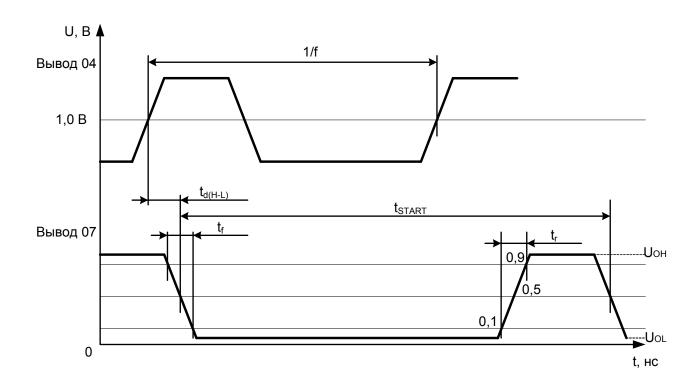
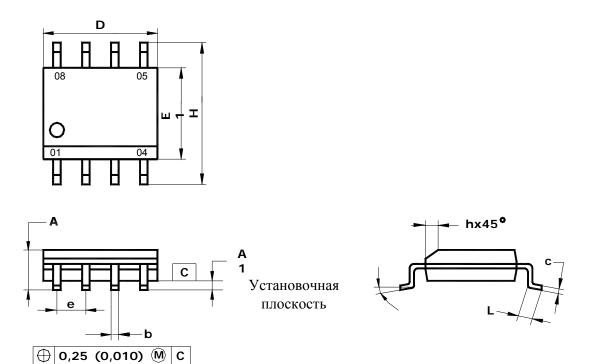
Выходной каскад вентиля управления с двумя устойчивыми состояниями, с большим выходным вытекающим и втекающим током, применим для управления мощным MOSFET или IGBT транзисторами, что в сочетании с другими параметрами делает микросхему отличным недорогим решением для импульсных блоков питания.

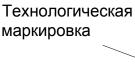
Микросхема IL6562D характеризуется предельно низким током потребления (не более 70 мкА до включения и не более 5 мА в рабочем режиме) и включает функцию блокировки.

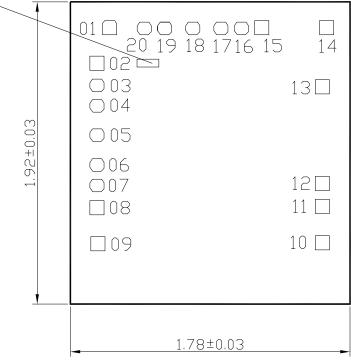
Эффективна двухступенчатая защита от перенапряжения, включающая безопасное управление скачками напряжения, которые могут происходить либо при запуске, либо при обрыве нагрузки.

Назначение выводов микросхемы:

- INV (01) Вход инвертирующий усилителя ошибки. Значение выходного напряжения с предрегулятора коррекции фактора мощности передается на вывод через резистивный делитель;
- COMP (02) Выход усилителя ошибки. Компенсирующая цепь располагается между этим выводом и INV (вывод 01) для достижения стабильности в цепи контроля напряжения и гарантии высокого коэффициента мощности и низкого THD (суммарное значение коэффициента нелинейных искажений);
- MULT (03) Вход умножителя. Этот вывод связан с выпрямленным напряжением сети через резистивный делитель и обеспечивает синусоидальный опорный сигнал для цепи обратной связи;
- CS (04) Вход ШИМ компаратора. Ток, протекающий через MOSFET, контролируется с помощью резистора. Результирующее напряжение, направленное к этому выводу, сравнивается с внутренним синусоидальным опорным сигналом, генерируемым умножителем, и управляет выключением MOSFET;
- ZCD (05) Вход контролирующий. Этот вход контролирует повышение размагничивания катушки в переключающем режиме. Отрицательный уровень включает MOSFET;
 - GND (06)- Общий вывод;
- GD (07) Выход управляющего вентиля. Выходной каскад может управлять транзисторами MOSFET и IGBT с максимальным пиковым выходным вытекающим током 600 мА и выходным пиковым втекающим током 800 мА. Высокий уровень напряжения на этом выходе ограничивается на уровне 12 В, чтобы избежать недопустимых значений напряжения на затворе транзисторов в случае, когда U_{CC} более 12 В;
- Vcc (08) Вывод питания. Для расширения диапазона по напряжению питания верхний предел увеличен до 22 В.


Рисунок 4 — Временная диаграмма измерения времени спада выходного сигнала $t_{\rm f}$, времени нарастания выходного сигнала $t_{\rm r}$, времени задержки распространения при включении микросхемы $t_{\rm d(H-L)}$, времени перезапуска таймера $t_{\rm START}$



	D	E1	Н	b	е	α	Α	A1	С	L	h
Миллиметры											
min	4,80	3,86	5,84	0,35		0°	1,35	0,10	0,19	0,40	0,25
max	4,95	4,00	6,20	0,51	1,27	8°	1,75	0,25	0,25	0,89	0,50

Рисунок 5 – Габаритные размеры корпуса MS-012AA

Технологическая маркировка на кристалле IL6562 с координатами, мм: левый нижний угол x = 0,170, y = 1,630.

Рисунок 6- Габаритный чертеж кристалла

Координаты контактных площадок указаны в таблице 6.

Таблица 6 - Таблица координат контактных площадок

Номер кон-	Координаты (лев	Размер контактной	
тактной	Х	Υ	площадки, мм
площадки	X	•	
01	0,204	1,711	0,090x0,090
02	0,124	1,485	0,090x0,090
03	0,124	1,349	0,090x0,080
04	0,124	1,219	0,090x0,080
05	0,124	1,033	0,090x0,080
06	0,124	0,843	0,090x0,080
07	0,124	0,713	0,090x0,080
08	0,124	0,567	0,090x0,090
09	0,130	0,338	0,090x0,090
10	1,559	0,344	0,090x0,090
11	1,559	0,575	0,090x0,090
12	1,559	0,721	0,090x0,090
13	1,559	1,335	0,090x0,090
14	1,586	1,711	0,090x0,090
15	1,173	1,711	0,090x0,090
16	1,043	1,711	0,090x0,080
17	0,913	1,711	0,090x0,080
18	0,734	1,711	0,090x0,080
19	0,555	1,711	0,090x0,080
20	0,425	1,711	0,090x0,080

Примечание – Координаты и размер контактных площадок даны по слою "Пассивация"

