ОЗУ статическое с портами ввода вывода 1642PK1УБМ

Микросхема 1642РК1УБМ представляет собой двухпортовое статическое ОЗУ емкостью 64К (8Кх8) с двумя независимыми портами с раздельным управлением, адресом и выводами вход/выход, которые позволяют осуществить независимый, асинхронный доступ для чтения или записи по любому адресу в памяти. Применяется как самостоятельное двухпортовое ОЗУ 64К или как сочетание ведущее/ведомое двухпортовое ОЗУ для 16-ти и более разрядных систем. Микросхема предназначена для использования в высокопроизводительных системах обработки информации и устройствах управления специального применения. Изготавливается в 64-выводном корпусе типа Н18.64-3В, имеющем технологические перемычки расположенные между 24 и 25 и между 56 и 57 выводами. **Прототип IDT7005 ф. IDT**

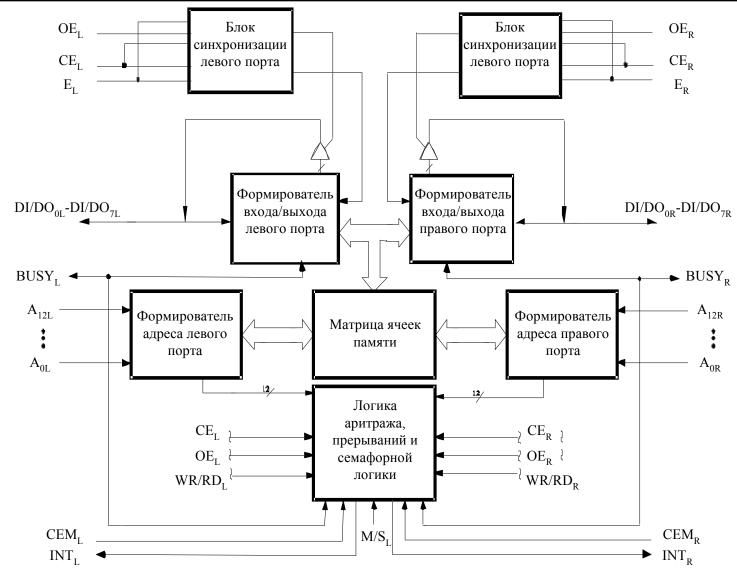
Назначение выводов

Номер вывода	Обозначение	Назначение	Направление
01	DI/DO _{2L}	Бит 2 Данных левого порта	вход /выход
02	DI/DO _{3L}	Бит 3 Данных левого порта	вход /выход
03	DI/DO _{4L}	Бит 4 Данных левого порта	вход /выход
04	DI/DO _{5L}	Бит 5 Данных левого порта	вход /выход
05	GND	Общий вывод	
06	DI/DO _{6L}	Бит 6 Данных левого порта	вход /выход
07	DI/DO _{7L}	Бит 7 Данных левого порта	вход /выход
08	V_{CC}	Вывод источника питания	
09	GND	Общий вывод	
10	DI/DO _{0R}	Бит 0 Данных правого порта	вход /выход
11	DI/DO _{1R}	Бит 1 Данных правого порта	вход /выход
12	DI/DO _{2R}	Бит 2 Данных правого порта	вход /выход
13	V_{CC}	Вывод питания от источника напряжения	

Назначение выводов (продолжение)

Номер вывода	Обозначение	Назначение	Направление
14	DI/DO _{3R}	Бит 3 Данных правого порта	вход /выход
15	DI/DO _{4R}	Бит 4 Данных правого порта	вход /выход
16	DI/DO _{5R}	Бит 5 Данных правого порта	вход /выход
17	DI/DO _{6R}	Бит 6 Данных правого порта	вход /выход
18	DI/DO _{7R}	Бит 7 Данных правого порта	вход /выход
19	OE_R	Запрет вывода правого порта	вход
20	WR/RD_R	Чтение/запись правого порта	вход
21	SEM_R	Разрешение работы семафора правого порта	вход
22	CE_R	Вход сигнала разрешения правого порта	вход
23	NC	Вывод свободный	
24	GND	Общий вывод	
25	A_{12R}	Бит 12 адреса правого порта	вход
26	A_{11R}	Бит 11 адреса правого порта	вход
27	A_{10R}	Бит 10 адреса правого порта	вход
28	A_{9R}	Бит 9 адреса правого порта	вход
29	${ m A_{8R}}$	Бит 8 адреса правого порта	вход
30	$\mathrm{A}_{7\mathrm{R}}$	Бит 7 адреса правого порта	вход
31	A_{6R}	Бит 6 адреса правого порта	вход
32	${ m A}_{5 m R}$	Бит 5 адреса правого порта	вход
33	$\mathrm{A}_{4\mathrm{R}}$	Бит 4 адреса правого порта	вход
34	A_{3R}	Бит 3 адреса правого порта	вход
35	A_{2R}	Бит 2 адреса правого порта	вход
36	A_{1R}	Бит 1 адреса правого порта	вход
37	A_{0R}	Бит 0 адреса правого порта	вход
38	INT_R	Прерывание правого порта	выход
39	BUSYR	Busy правого порта	вход /выход
40	M/S	Ведущий/ведомый	вход

Назначение выводов (продолжение)


Номер вывода	Обозначение	Назначение	Направление
41	GND	Общий вывод	
42	$BUSY_L$	Виѕу левого порта	вход /выход
43	INT_{L}	Прерывание левого порта	выход
44	A_{0L}	Бит 0 адреса левого порта	вход
45	A_{1L}	Бит 1 адреса левого порта	вход
46	${ m A}_{ m 2L}$	Бит 2 адреса левого порта	вход
47	A_{3L}	Бит 3 адреса левого порта	вход
48	${ m A_{4L}}$	Бит 4 адреса левого порта	вход
49	${ m A}_{ m 5L}$	Бит 5 адреса левого порта	вход
50	${ m A}_{ m 6L}$	Бит 6 адреса левого порта	вход
51	${ m A}_{7L}$	Бит 7 адреса левого порта	вход
52	A_{8L}	Бит 8 адреса левого порта	вход
53	A_{9L}	Бит 9 адреса левого порта	вход
54	A_{10L}	Бит10 адреса левого порта	вход
55	A_{11L}	Бит11 адреса левого порта	вход
56	A_{12L}	Бит12 адреса левого порта	вход
57	V_{CC}	Вывод питания от источника напряжения	
58	N/C	Вывод свободный	
59	CE_{L}	Вход сигнала разрешения левого порта	вход
60	SEM_L	Разрешение работы семафора левого порта	вход
61	WR/RD _L	Чтение/запись левого порта	вход
62	OE_L	Запрет вывода левого порта	вход
63	DI/DO0L	Бит 0 Данных левого порта	вход /выход
64	DI/DO1L	Бит 1 Данных левого порта	вход /выход

Предельные режимы

Ogomowowa	Папаматру	Нор	Единица	
Обозначение	Параметры	не менее	не более	измерения
U _{TERM}	Напряжение питания	-0.5	7	В
Ui	Входное напряжение	-0.5	7	В
T	Температурный диапазон хранения без подачи напряжения питания	-60	150	°C
Tamb	Температура окружающей среды при подаче напряжения питания.	-60	135	°C
I_{O}	Выходной ток	-50	50	мА

Предельно допустимые режимы

Обозначение	Параметры	Ho	Единица	
Ооозначение	параметры	не менее	не более	измерения
Ucc	Напряжение питания	4.5	5.5	В
$V_{ m IH}$	Входное напряжение высокого уровня	2.2	6.0	В
$ m V_{IL}$	Входное напряжение низкого уровня	0	0.8	В
I_{OL}	Выходной ток низкого уровня		4	мА
I_{OH}	Выходной ток высокого уровня	_	-4	мА
T	Рабочий температурный диапазон среды	-60	+125	$^{\circ}\mathrm{C}$

Структурная схема микросхемы

Статические параметры

Обозначение	Парамотру	Романи изморония	Но	рма	Единица	
Ооозначение	Параметры	Режим измерения	не менее	не более	измерения	
I_{LI}	Ток утечки по входу	$V_{IN}=0 \div Ucc Ucc=5.5B$		10	мкА	
I_{LO}	Ток утечки по выходу	$V_{OUT}=0 \div Ucc Ucc=5.5B$	-	10	MKA	
$ m V_{OH}$	Выходное напряжение высокого уровня	I_{OH} =-4 _M A	2.4	-	В	
$ m V_{OL}$	Выходное напряжение низкого уровня	I_{OL} =4 MA		0.4	В	
I_{CC}	Динамический рабочий ток (оба порта активные)	CE=V _{IL} ,Выходы открыты SEM=V _{IL} , f=fMAX(1)		300		
I_{SB1}	Ток хранения (Оба порта – входы с TTL уровнями)	CE _L =CE _R =V _{IH} , SEM _R =SEM _L =V _{IH} f=fMAX ⁽¹⁾		80		
I_{SB2}	Ток хранения (Один порт – входы с TTL уровнями)	$CE "A"=V_{IL \ II} CE "B"=V_{IH}^{(3)}$. Выходы активного порта открыты. $f=14M\Gamma_{II} SEM_R=SEM_L=V_{IH}$		190		
$ m I_{SB3}$	Полный ток хранения (Оба порта – все входы с КМОП уровнями)	Оба порта: $CE_L \text{ и } CE_R \geq Vcc\text{-}0.2B$ $V_{IN} \geq Vcc\text{-}0.2B \text{ или } V_{IN} \leq 0.2B, f\text{=}0^{(2)},$ $SEM_R\text{=}SEM_L \geq Vcc\text{-}0.2B$	-	30	мА	
$ m I_{SB4}$	Полный ток хранения (Один порт – все входы с КМОП уровнями)	CE "A" $\leq 0.2B$ и CE "B" $\geq Vcc$ -0.2B $SEM_R = SEM_L \geq Vcc$ -0.2B $V_{IN} \geq Vcc$ -0.2B или $V_{IN} \leq 0.2B$ Выходы активного порта открыты $f = fMAX^{(1)}$		175		
C_{IN}	Входная емкость	V _{IN} =0 В f=1МГц, T=25°С (3)		9	пФ	
C_{out}	Выходная емкость	$V_{OUT}=0 \text{ B f}=1\text{M}\Gamma\text{II}, T=25^{\circ}\text{C (3)}$		10	ПΨ	
ФК	Функциональный контроль (4)	Ucc=4.55.5B F=14МГц				

Примечания:

- 1. f = 0 означает отсутствие переключения адресов или цепей управления.
- 2. Порт "А" может быть или левый или правый порт. Порт "В" есть порт противоположный "А" порту.
- 3 Параметр гарантируется квалифицированными испытаниями.
- 4 В случае если функциональный контроль проводят на максимальной рабочей частоте (F=14МГц) проверку динамических параметров допускается не проводить.
 - 5 Нормы на параметры и режимы измерений таблицы 4 могут уточняться в ходе ОКР в технически обоснованных случаях.

Динамические параметры цикла чтения (Ucc=4.5B,T= -60 ÷ 125 °C)

Наименование параметра	Обозначение	Нор	Примечание	
паименование параметра	параметра	не менее	не более	примечание
Время цикла чтения, нс	t _{CY R}	70	_	_
Время выборки адреса	$t_{A(A)}$		70	
Время выбора	t_{CS}	_	70	1
Время выборки разрешения выхода	$t_{A(OE)}$		35	_
Сохранение выхода по смене адреса	t_{OH}	3	_	
Время выхода по Low-Z	t_{LZ}	3		2
Время выхода по High-Z	t_{HZ}	_	30	2
Время включения мощности хранения по СЕ	t_{PU}	0		
Время отключения мощности хранения по СЕ	t_{PD}	_	50	
Импульс обновления сигнального флага ($\overline{\text{OE}}$ или $\overline{\text{SEM}}$)	t_{SOP}	15	_	_
Время доступа сигнального адреса	t_{SAA}	_	70	

Примечания

- 1 Для доступа к ОЗУ $CE = V_{IL}$ и $SEM = V_{IH}$. Для доступа к флаг-сигналу $CE = V_{IH}$ и $SEM = V_{IL}$
- 2 Время задержки измеряется на уровне \pm 500 мВ от низкого или высокого уровня напряжения выходного сигнала

Динамические параметры цикла записи (Ucc=4.5÷5.5B,T= -60 ÷ 125 °C)

Наименование параметра	Обозначение	Норм	1а, нс	Приме
паименование параметра	параметра	не менее	не более	чание
Время цикла записи	t _{CY W}	70		_
Разрешение кристалла к концу записи	t_{EW}	50		1
Значение адреса к концу записи	t_{AW}	50		_
Время предустановки адреса	$t_{ m AS}$	0	_	1
Ширина импульса записи	$t_{ m WP}$	50		
Время восстановления записи	t_{WR}	0		_
Значение данных к концу записи	$t_{ m DW}$	40		
Выходное время High-Z	$t_{ m HZ}$	_	30	2
Время удержания данных	$t_{ m DH}$	0	_	_
Разрешение записи к выходу High-Z	$t_{ m WZ}$	_	30	
Включение выхода от конца записи	t_{OW}	0		2
Время БЕМ флага от записи к чтению	$t_{ m SWRD}$	5	_	
Окно содержимого \overline{SEM} флага	t_{SPS}	5		_

Примечания

1 Для доступа к ОЗУ $\overline{CE} = V_{IL}$ и $\overline{SEM} = V_{IH}$. Для доступа к флаг-сигналу $\overline{CE} = V_{IH}$ и $\overline{SEM} = V_{IL}$

2 Время задержки измеряется на уровне \pm 500 мВ от низкого или высокого уровня напряжения выходного сигнала

Динамические параметры в режиме \overline{BUSY} (Ucc=4.5÷5.5B,T= -60 ÷ 125 °C)

Наимонорамие нарометра	Обозначение	Норм	1а, нс
Наименование параметра	параметра	не менее	не более
Временная диаграмма	$\overline{BUSY} \ (M/\overline{S} = V_{IH})$	_	_
Время доступа \overline{BUSY} от совпадения адреса	$t_{ m BAA}$	_	45
Время запрета \overline{BUSY} от несовпадения адреса	$t_{ m BDA}$		40
Время доступа \overline{BUSY} от Low разрешения	t_{BAC}		40
кристалла			
Время доступа \overline{BUSY} от High разрешения	$t_{ m BDC}$		35
кристалла			
Время установки арбитража приоритета	$t_{ m APS}$	5	
Запрет \overline{BUSY} к значению данных	$t_{ m BDD}$	_	45
Удержание записи после \overline{BUSY}	$t_{ m WH}$	25	_
Временная диаграмма	\overline{BUSY} (M/ \overline{S} =V _{IL})		
\overline{BXOJ} \overline{BUSY} к записи	$t_{ m WB}$	0	_
Удержание записи после \overline{BUSY}	$t_{ m WH}$	25	
Временная диаграмма за	держки Порт-Порт		
Импульс записи к задержке данных	$t_{ m WDD}$	_	95
Значение данных записи к задержке данных	$t_{ m DDD}$		80
чтения			

Динамические параметры в режиме прерывания (Ucc=4.5÷5.5B,T= -60 ÷ 125 °C)

Наименование параметра	Обозначение	Но	рма, нс
паименование параметра	параметра	не менее	не более
Время предустановки адреса	t_{AS}	0	_
Время восстановления записи	$t_{ m WR}$	0	
Время установки прерывания	$t_{ m INS}$	_	50
Время сброса прерывания	$t_{\rm INR}$		50

Таблица истинности режимов чтения, записи

	B	ход		Вход/выход	D		
CE	WR/RD	ŌĒ	SEM	DI/DO	Режим		
Н	X	X	Н	Z	Пониженного потребления мощности		
L	L	X	Н	Вход данных	Запись		
L	Н	L	Н	Выход данных	Чтение		
X	Х Х Н Х Z Состояние с высоким импедансом						
П	Примечание – Адреса правого и левого портов не совпадают						

Таблица истинности режима семафора чтения, записи

	Bxc	DД		Выход	Darrens
$\overline{\text{CE}}$	WR/RD	ŌE	SEM	DI/DO ₁	Режим
Н	Н	L	L	Выход данных	Чтение (контроль) семафора выходных данных
Н	\uparrow	X	L	Вход данных	Запись DI/DO ₁ в флаг семафора
L	X	X	L	_	запрещено

Примечание – Имеются 8 флагов семафора, записываемые через DI/DO_1 и считываемые из $DI/DO_1 - DI/DO_8$. Эти флаги кодируются адресами $A_0 - A_2$

Таблица истинности режима прерывания 1)

	юрт	Правый порт					Φ			
WR/RD_L	$\overline{\text{CE}}_{\text{L}}$	$\overline{\text{OE}}_{\text{L}}$	A_{0L} - A_{12L}	$\overline{\text{INT}}_{\text{L}}$	WR/RD _R	$\overline{\text{CE}}_{R}$	$\overline{\text{OE}}_{R}$	$A_{0R} - A_{12R}$	$\overline{\text{INT}}_{R}$	Функция
L	L	X	111111111	X	X	X	X	X	L 3)	Установка флага прерывания правого порта
X	X	X	X	X	X	L	L	111111111	$H^{2)}$	Сброс флага прерывания правого порта
X	X	X	X	L 3)	L	L	X	111111110	X	Установка флага прерывания левого порта
X	L	L	111111110	$H^{2)}$	X	X	X	X	X	Сброс флага прерывания левого порта

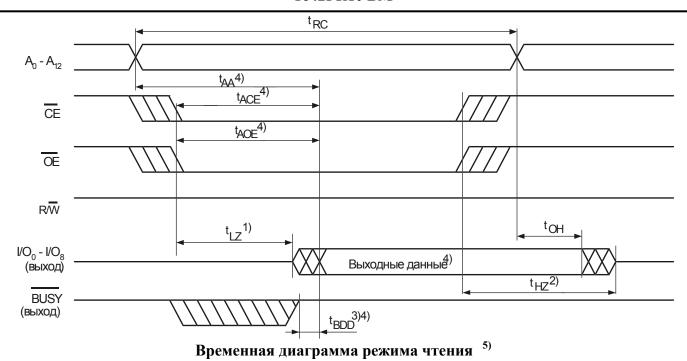
 $^{^{1)}}$ В исходном состоянии входы $\overline{BUSY_L} = BUSY_R = V_{IH}$. Выходы \overline{INT}_R и \overline{INT}_L должны быть установлены в исходное состояние при включении питания

 $^{^{2)}}$ Если вход BUSY_R = V_{IL} изменения не происходят

 $^{^{3)}}$ Если вход BUSY_L = V_{IL} изменения не происходят

Таблица истинности арбитража BUSY

	Bxo	ды	Вых	оды		
$\overline{\text{CE}}_{\text{L}}$	$\overline{\text{CE}}_{R}$	${ m A_{0L}}{ m - A_{12L}} \ { m A_{0R}}{ m - A_{12R}}$	BUSY L1)	BUSY _R 1)	Функция	
X	X	не совпадают	Н	Н	нормальный	
Н	X	совпадают	Н	Н	нормальный	
X	H	совпадают	Н	Н	нормальный	
L	L	совпадают	2)	2)	запись запрещена ³⁾	

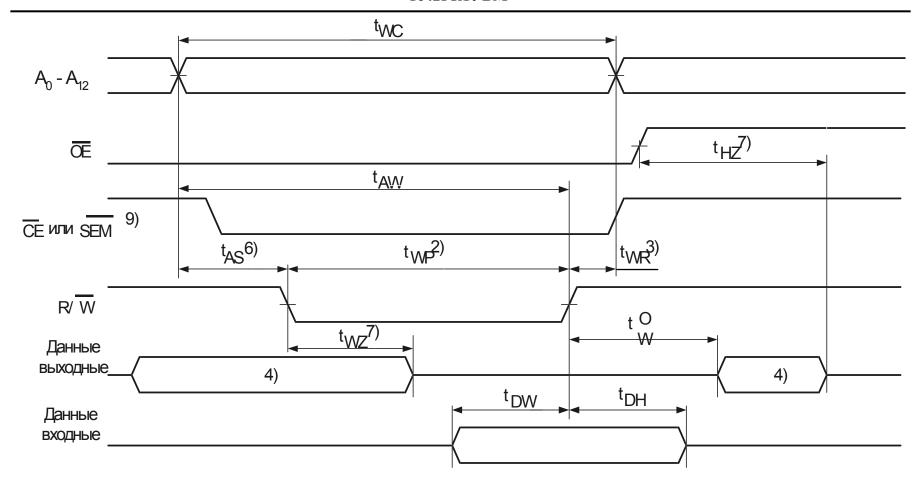

 $[\]overline{BUSY}_{L}$, \overline{BUSY}_{R} являются выходами, когда установлены , как «ведущие». Оба вывода являются входами, когда установлены, как «ведомые». Вывод \overline{BUSY} двухтактный, не является выходом с открытым стоком. В состоянии «ведомого» вход \overline{BUSY} извне запрещает запись в ячейку

H – если входы противоположного порта устанавливаются после адресов и входов разрешения этого порта.

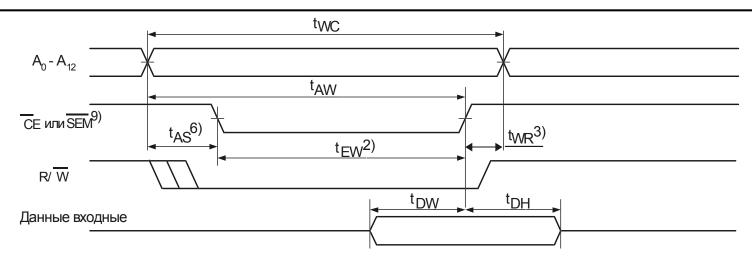
Если время установки арбитража приоритета t_{APS} не достигнуто, один из выходов BUSY $_L$ или \overline{BUSY}_R станет L, оба выхода одновременно не могут перейти в состояние логического "0"

²⁾ L – если входы противоположного порта имеют приоритет по адресам или входам разрешения этого порта.

 $^{^{3)}}$ Запись в левый (правый) порт запрещается извне, подачей на вывод \overline{BUSY}_L (\overline{BUSY}_R) уровня логического 0, независимо от состояния остальных логических входов

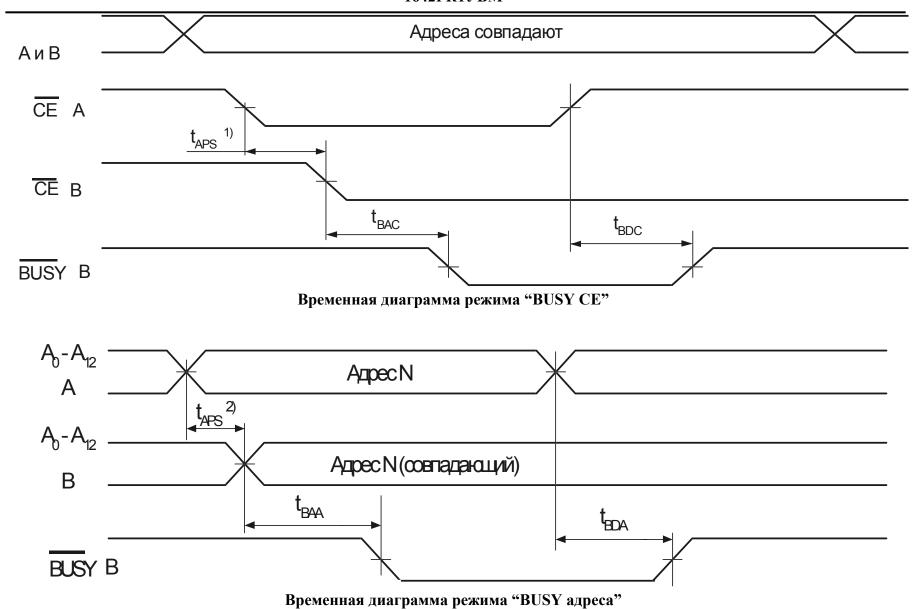

 $^{1)}$ Параметр зависит от того, какой из сигналов $\overline{\rm OE}\,$ или $\overline{\rm CE}\,$ установится последним

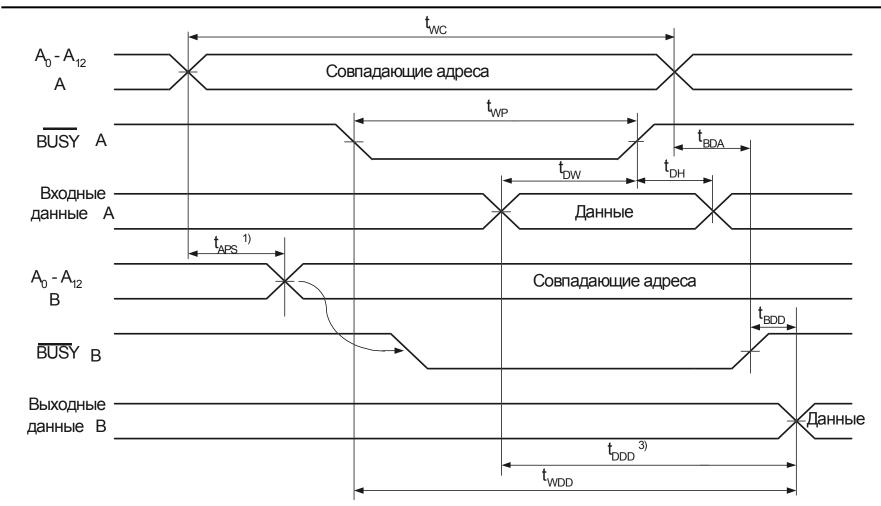
 $\overline{^{2)}}$ Параметр зависит от того, какой из сигналов \overline{OE} или \overline{CE} последним выйдет из режима

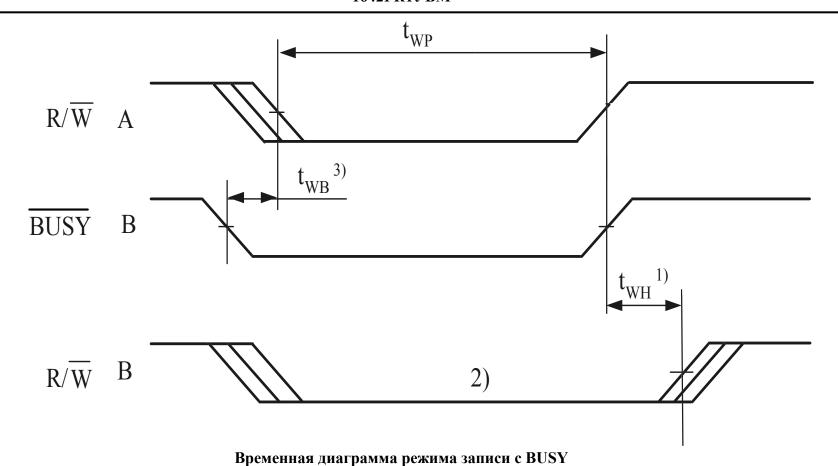

³⁾ Задержка необходима только в случае, когда противоположный порт производит запись в ячейки с тем же адресом. Для одновременного чтения работа BUSY не влияет на выходные данные

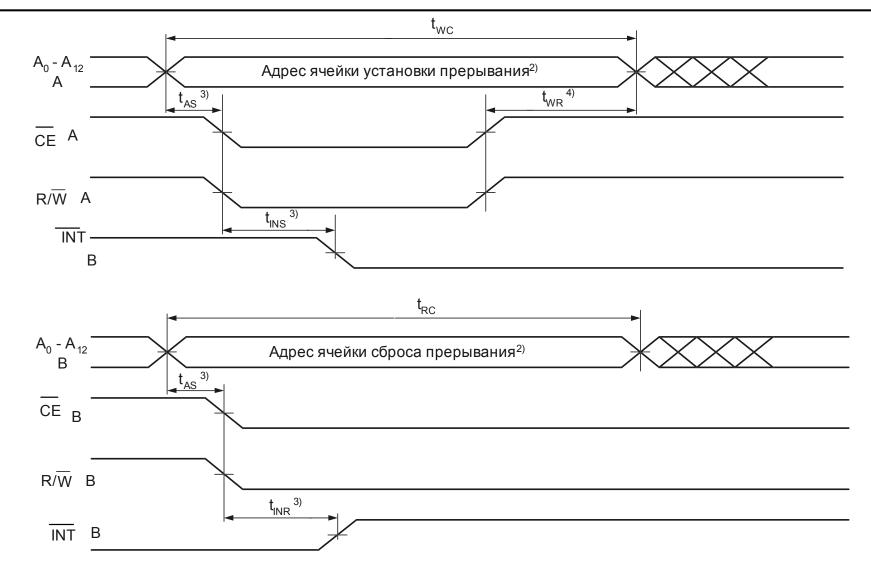
⁴⁾ Начало чтения выходных данных зависит от того, какое событие произойдет последним: t_{AA} , t_{ACE} , t_{AOE} или t_{BDD}

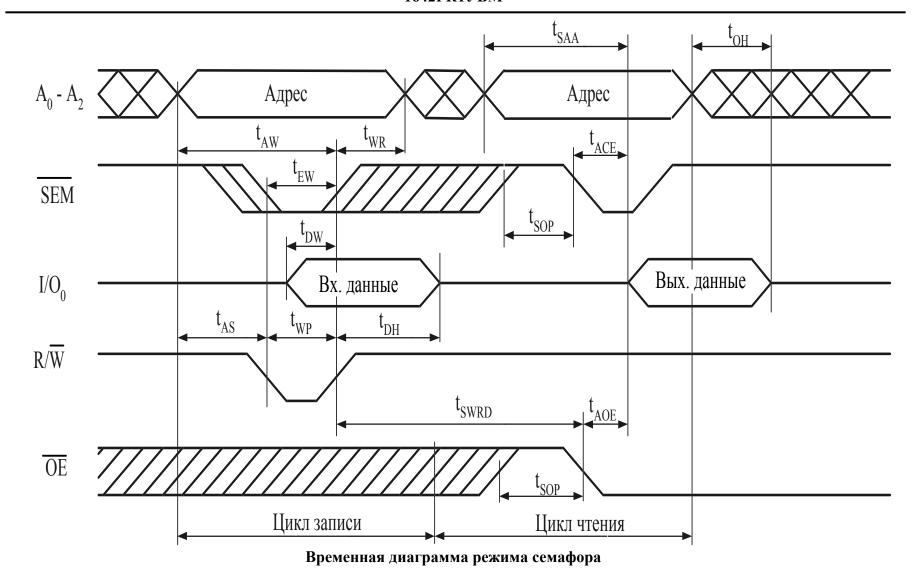
 $5) \overline{\text{SEM}} = V_{\text{IH}}$

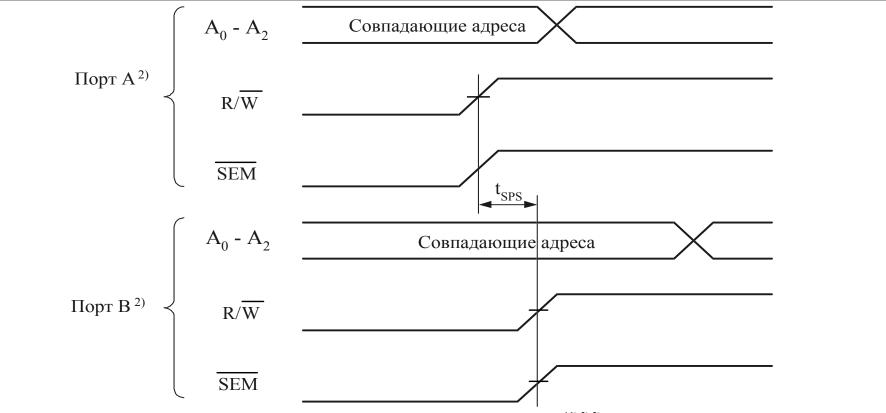



Временная диаграмма режима записи 1 $^{1)\,5)\,8}$


Временная диаграмма режима записи 2 1) 5)


- * 1) Выводы R/\overline{W} или \overline{CE} должны оставаться высокими во время переключения адресов
- $^{2)}$ Запись может накладываться (перекрываться) (t_{EW} , t_{WP}) низким уровнем на выводе \overline{CE} и низким уровнем на выводе R/\overline{W} цикла записи в массив памяти
- $^{3)}$ t_{WR} измеряется от ранее перешедшего в высокий уровень сигнала \overline{CE} или R/\overline{W} (или \overline{SEM} или R/\overline{W}) в конце цикла записи
 - ⁴⁾ В течение этого режима выводы DI/DO являются выходами и входные сигналы не должны применяться
- $^{5)}$ Если переход в низкий уровень выводов $\overline{\text{CE}}$ и $\overline{\text{SEM}}$ происходит одновременно, выходы сохраняют третье состояние (высокого импеданса)
 - $^{6)}$ Время зависит от того, какой из сигналов $\overline{\text{CE}}$ или R/\overline{W} установится последним
- $^{7)}$ Этот параметр гарантируется конструктивно, но не контролируется. Измеряется переход \pm 500 мВ из устойчивого состояния по схеме, приведенной на рисунке A.8
- $^{8)}$ Если \overline{OE} остается низким в течение всего цикла записи, контролируемого R/\overline{W} , ширина импульса должна увеличиться на время t_{WP} или $(t_{WZ}+t_{WD})$, чтобы разрешить выводам DI/DO выключиться и данным разместиться на шине для ожидания t_{DW}
- $^{9)}$ Для доступа к O3У $\overline{\text{CE}} = V_{\text{IH}}, \ \overline{\text{SEM}} = V_{\text{IL}}$. Для доступа к флаг-сигналу $\overline{\text{CE}} = V_{\text{IH}}, \ \overline{\text{SEM}} = V_{\text{IL}}$. t_{EW} должно перейти в любое состояние




Временная диаграмма режима BUSY порт-порт

Временная диаграмма режима прерывания

Временная диаграмма режима семафора^{*1) 2) 3)}

 $^{^{*~1)}}$ DI/DO_L = DI/DO_R = V_{IL}, $\overline{CE}_L = \overline{CE}_R = V_{IH}$. Флаг семафора обоих портов свободен на начало цикла.

 $^{^{2)}}$ Динамические параметры одинаковы для левого и правого портов. Порт A может быть как левым портом, так и правым, порт B – противоположный порту A.

 $^{^{3)}}$ Параметр измеряется от вывода, R/ \overline{W}_A или \overline{SEM}_A , переключившегося в высокий уровень, до вывода, R/ \overline{W}_B или \overline{SEM}_B , переключившегося в высокий уровень.

⁴⁾ Если время t_{SPS} не достаточное, семафор установится для одного из портов, но не конкретный порт не гарантируется